1
|
K Nazar A, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024:S0001-2998(24)00058-8. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
2
|
Li S, Xu Y, Lu X, Wang W, Yang J. A False-Negative 123I-MIBG SPECT/CT With True-Positive 68Ga-DOTATATE PET/CT in a Patient With Neuroblastoma Following 177Lu-DOTATATE Therapy. Clin Nucl Med 2024:00003072-990000000-01236. [PMID: 39093037 DOI: 10.1097/rlu.0000000000005397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
ABSTRACT A 10-year-old girl with high-risk neuroblastoma underwent 123I-MIBG SPECT/CT and 68Ga-DOTATE PET/CT, which both showed multiple bone metastases. However, following 177Lu-DOTATATE therapy, only 68Ga-DOTATATE PET/CT identified residual lesions with negative 123I-MIBG SPECT/CT results. The case emphasized the complementary role of 68Ga-DOTATATE PET/CT and 123I-MIBG SPECT/CT after 177Lu-DOTATATE therapy.
Collapse
Affiliation(s)
- Siqi Li
- From the Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
3
|
Feng L, Li S, Wang C, Yang J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin Nucl Med 2023; 53:517-529. [PMID: 36682980 DOI: 10.1053/j.semnuclmed.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and arises from anywhere along the sympathetic nervous system. It is a highly heterogeneous disease with a wide range of prognosis, from spontaneous regression or maturing to highly aggressive. About half of pediatric neuroblastoma patients develop the metastatic disease at diagnosis, which carries a poor prognosis. Nuclear medicine plays a pivotal role in the diagnosis, staging, response assessment, and long-term follow-up of neuroblastoma. And it has also played a prominent role in the treatment of neuroblastoma. Because the structure of metaiodobenzylguanidine (MIBG) is similar to that of norepinephrine, 90% of neuroblastomas are MIBG-avid. 123I-MIBG whole-body scintigraphy is the standard nuclear imaging technique for neuroblastoma, usually in combination with SPECT/CT. However, approximately 10% of neuroblastomas are MIBG nonavid. PET imaging has many technical advantages over SPECT imaging, such as higher spatial and temporal resolution, higher sensitivity, superior quantitative capability, and whole-body tomographic imaging. In recent years, various tracers have been used for imaging neuroblastoma with PET. The importance of patient-specific targeted radionuclide therapy for neuroblastoma therapy has also increased. 131I-MIBG therapy is part of the front-line treatment for children with high-risk neuroblastoma. And peptide receptor radionuclide therapy with radionuclide-labeled somatostatin analogues has been successfully used in the therapy of neuroblastoma. Moreover, radioimmunoimaging has important applications in the diagnosis of neuroblastoma, and radioimmunotherapy may provide a novel treatment modality against neuroblastoma. This review discusses the use of current and novel radiopharmaceuticals in nuclear medicine imaging and therapy of neuroblastoma.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Chen D, Yang S, Chen J, Li T, Liu Y, Zhao X, Zhang T, Xu M, Wang H, Zhao K, Su X. Comparison of [ 18F]-OC PET/CT and contrast-enhanced CT/MRI in the detection and evaluation of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 2023; 50:2420-2431. [PMID: 36971805 DOI: 10.1007/s00259-023-06200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Gallium-68 (68Ga)-labeled somatostatin analog (SSA) PET imaging has been widely used in clinical practice of neuroendocrine neoplasms (NENs). Compared with 68Ga, 18F has a great practical and economic advantage. Although a few studies have shown the characteristics of [18F] AlF-NOTA-octreotide ([18F]-OC) in healthy volunteers and small NEN patient groups, its clinical value needs further investigation. Herein, this retrospective study aimed to evaluate the diagnostic accuracy of [18F]-OC PET/CT in detecting NENs, as well as to compare it with contrast-enhanced CT/MRI. METHODS We retrospectively reviewed the data of 93 patients who had undergone [18F]-OC PET/CT and CT or MRI scans. Of these patients, there were 45 patients with suspected NENs for diagnostic evaluation, and 48 patients with pathologically confirmed NENs for detecting metastasis or recurrence. [18F]-OC PET/CT images were evaluated visually and semi-quantitatively by measuring maximum standardized uptake value of tumor (SUVmax), tumor-to-background SUVmax ratio (TBR), and SUVmax of hypophysis (SUVhypophysis). A total of 276 suspected NEN lesions were found in these 93 patients. The results of histopathology or radiographic follow-up served as the reference standard for the final diagnosis. RESULTS Forty-five patients with suspected NENs were confirmed by histopathological examination via resection or biopsy. [18F]-OC PET/CT showed high radiotracer uptake in the lesions of G1-G3 NENs. [18F]-OC PET/CT showed superior performance with 96.3% of sensitivity, 77.8% of specificity, and 88.9% of accuracy in diagnosing NENs compared to CT/MRI. When cutoffs of SUVmax, TBR, and SUVhypophysis were 8.3, 3.1, and 15.4, [18F]-OC PET/CT had the best equilibrium between sensitivity and specificity for differentiating NEN from non-NEN lesions. For a total of 276 suspected NEN lesions, the sensitivity, specificity, and accuracy of [18F]-OC PET/CT for diagnosis of NENs were 90.5%, 82.1%, and 88.8%, respectively, and were higher than those of CT and MRI. G1 and G2 NENs had higher TBR and lower CT enhancement intensity than G3. The SUVmax and TBR had a positive correlation with CT enhancement intensity in G2 rather than in G1 or G3. CONCLUSIONS [18F]-OC PET/CT is a promising imaging modality for initial diagnosis and detecting metastasis or postoperative recurrence in NENs.
Collapse
Affiliation(s)
- Donghe Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shuye Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jingjing Chen
- Pharmacy Intravenous Admixture Services (PIVAS), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Tiancheng Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yinuo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Xin Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Tingting Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Mimi Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Huatao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
5
|
Lai HA, Sharp SE, Bhatia A, Dietz KR, McCarville B, Rajderkar D, Servaes S, Shulkin BL, Singh S, Trout AT, Watal P, Parisi MT. Imaging of pediatric neuroblastoma: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e29974. [PMID: 36184716 PMCID: PMC10680359 DOI: 10.1002/pbc.29974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Neuroblastoma is the most common extracranial solid neoplasm in children. This manuscript provides consensus-based imaging recommendations for pediatric neuroblastoma patients at diagnosis and during follow-up.
Collapse
Affiliation(s)
- Hollie A. Lai
- Department of Radiology, Children’s Health Orange County, Orange, CA
| | - Susan E. Sharp
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Aashim Bhatia
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kelly R. Dietz
- Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Sabah Servaes
- Department of Radiology, West Virginia University Children’s Hospital, Morgantown, WV
| | - Barry L. Shulkin
- Department of Diagnostic Imaging, University of TN Health Science Center, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sudha Singh
- Department of Radiology, Monroe Carrell Jr Children’s Hospital, Vanderbilt University, Nashville, TN
| | - Andrew T. Trout
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pankaj Watal
- Department of Radiology, Nemours Children’s Hospital, Florida and University of Central Florida College of Medicine, Orlando, FL
| | - Marguerite T. Parisi
- Departments of Radiology and Pediatrics, University of Washington School of Medicine and Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
6
|
AlSadi R, Maaz AUR, Bouhali O, Djekidel M. 68Ga-DOTATATE PET in Restaging and Response to Therapy in Neuroblastoma: A Case Series and a Mini Review. J Nucl Med Technol 2023:jnmt.122.264694. [PMID: 37192823 DOI: 10.2967/jnmt.122.264694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023] Open
Abstract
68Ga-DOTATATE PET/CT is widely used for the evaluation of neuroendocrine tumors. Some reports exist on its use in the management of neuroblastoma. Building on the prior reports as well as our previous experience in using this technique for initial staging, we propose to describe its practical benefits in restaging and response to therapy. We describe different aspects including supply logistics, preparation, spatial resolution, and other practical applications. Methods: We reviewed the medical records for 8 patients who were evaluated with 68Ga-DOTATATE PET/CT at our institution over 2 y. A note was made of the patient and disease characteristics and the indication for PET imaging, and the results were retrospectively analyzed for feasibility, logistics, radiation exposure, and utility in answering the clinical question. Results: Eight children (5 girls and 3 boys; age range, 4-60 mo; median age, 30 mo) diagnosed with neuroblastoma were imaged with 68Ga-DOTATATE PET/CT and 5 with 123I-metaiodobenzylguanidine (123I-MIBG) SPECT/CT over 2 y. Three 68Ga-DOTATATE PET scans were done for staging, 10 for response evaluation, and 2 for restaging. 68Ga-DOTATATE PET accurately identified neuroblastoma lesions suspected or seen on anatomic imaging. It has been shown to be more specific and more sensitive than 123I-MIBG and at times also MRI. It had better spatial and contrast resolution than 123I-MIBG. 68Ga-DOTATATE PET was better than 123I-MIBG SPECT/CT, CT, and MRI in the detection of early progression and viable tumor delineation for response assessment, as well as in target volume definition for external-beam radiotherapy and proton-beam radiotherapy. 68Ga-DOTATATE PET was also better at assessing bony and bone marrow disease changes with time. Conclusion: 68Ga-DOTATATE PET/CT offers added value and a superior edge to other imaging modalities in restaging and response assessment in neuroblastoma patients. Further multicenter evaluations in larger cohorts are needed.
Collapse
Affiliation(s)
- Rahaf AlSadi
- Department of Science, Texas A&M University at Qatar, Doha, Qatar
| | - Ata Ur Rehman Maaz
- Department of Pediatrics, Division of Hematology-Oncology, Sidra Medicine, Doha, Qatar
| | - Othmane Bouhali
- Department of Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; and
| | | |
Collapse
|
7
|
Brink A, Hlongwa KN, More S. The Impact of PET/CT on Paediatric Oncology. Diagnostics (Basel) 2023; 13:192. [PMID: 36673002 PMCID: PMC9857884 DOI: 10.3390/diagnostics13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
This review paper will discuss the use of positron emission tomography/computed tomography (PET/CT) in paediatric oncology. Functional imaging with PET/CT has proven useful to guide treatment by accurately staging disease and limiting unnecessary treatments by determining the metabolic response to treatment. 18F-Fluorodeoxyglucose (2-[18F]FDG) PET/CT is routinely used in patients with lymphoma. We highlight specific considerations in the paediatric population with lymphoma. The strengths and weaknesses for PET/CT tracers that compliment Meta-[123I]iodobenzylguanidine ([123I]mIBG) for the imaging of neuroblastoma are summarized. 2-[18F]FDG PET/CT has increasingly been used in the staging and evaluation of disease response in sarcomas. The current recommendations for the use of PET/CT in sarcomas are given and potential future developments and highlighted. 2-[18F]FDG PET/CT in combination with conventional imaging is currently the standard for disease evaluation in children with Langerhans-cell Histiocytosis (LCH) and the non-LCH disease spectrum. The common pitfalls of 2-[18F]FDG PET/CT in this setting are discussed.
Collapse
Affiliation(s)
- Anita Brink
- Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | | | | |
Collapse
|
8
|
[ 18F]mFBG PET-CT for detection and localisation of neuroblastoma: a prospective pilot study. Eur J Nucl Med Mol Imaging 2023; 50:1146-1157. [PMID: 36504277 PMCID: PMC9931849 DOI: 10.1007/s00259-022-06063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Meta-[18F]fluorobenzylguanidine ([18F]mFBG) is a positron emission tomography (PET) radiotracer that allows for fast and high-resolution imaging of tumours expressing the norepinephrine transporter. This pilot study investigates the feasibility of [18F]mFBG PET-CT for imaging in neuroblastoma. METHODS In a prospective, single-centre study, we recruited children with neuroblastoma, referred for meta-[123I]iodobenzylguanidine ([123I]mIBG) scanning, consisting of total body planar scintigraphy in combination with single-photon emission computed tomography-CT (SPECT-CT). Within two weeks of [123I]mIBG scanning, total body PET-CTs were performed at 1 h and 2 h after injection of [18F]mFBG (2 MBq/kg). Detected tumour localisations on scan pairs were compared. Soft tissue disease was quantified by number of lesions and skeletal disease by SIOPEN score. RESULTS Twenty paired [123I]mIBG and [18F]mFBG scans were performed in 14 patients (median age 4.9 years, n = 13 stage 4 disease and n = 1 stage 4S). [18F]mFBG injection was well tolerated and no related adverse events occurred in any of the patients. Mean scan time for [18F]mFBG PET-CT (9.0 min, SD 1.9) was significantly shorter than for [123I]mIBG scanning (84.5 min, SD 10.5), p < 0.01. Most tumour localisations were detected on the 1 h versus 2 h post-injection [18F]mFBG PET-CT. Compared to [123I]mIBG scanning, [18F]mFBG PET-CT detected a higher, equal, and lower number of soft tissue lesions in 40%, 55%, and 5% of scan pairs, respectively, and a higher, equal, and lower SIOPEN score in 55%, 30%, and 15% of scan pairs, respectively. On average, two more soft tissue lesions and a 6-point higher SIOPEN score were detected per patient on [18F]mFBG PET-CT compared to [123I]mIBG scanning. CONCLUSION Results of this study demonstrate feasibility of [18F]mFBG PET-CT for neuroblastoma imaging. More neuroblastoma localisations were detected on [18F]mFBG PET-CT compared to [123I]mIBG scanning. [18F]mFBG PET-CT shows promise for future staging and response assessment in neuroblastoma. TRIAL REGISTRATION Dutch Trial Register NL8152.
Collapse
|
9
|
Pedersen C, Aboian M, McConathy JE, Daldrup-Link H, Franceschi AM. PET/MRI in Pediatric Neuroimaging: Primer for Clinical Practice. AJNR Am J Neuroradiol 2022; 43:938-943. [PMID: 35512826 DOI: 10.3174/ajnr.a7464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Modern pediatric imaging seeks to provide not only exceptional anatomic detail but also physiologic and metabolic information of the pathology in question with as little radiation penalty as possible. Hybrid PET/MR imaging combines exquisite soft-tissue information obtained by MR imaging with functional information provided by PET, including metabolic markers, receptor binding, perfusion, and neurotransmitter release data. In pediatric neuro-oncology, PET/MR imaging is, in many ways, ideal for follow-up compared with PET/CT, given the superiority of MR imaging in neuroimaging compared with CT and the lower radiation dose, which is relevant in serial imaging and long-term follow-up of pediatric patients. In addition, although MR imaging is the main imaging technique for the evaluation of spinal pathology, PET/MR imaging may provide useful information in several clinical scenarios, including tumor staging and follow-up, treatment response assessment of spinal malignancies, and vertebral osteomyelitis. This review article covers neuropediatric applications of PET/MR imaging in addition to considerations regarding radiopharmaceuticals, imaging protocols, and current challenges to clinical implementation.
Collapse
Affiliation(s)
- C Pedersen
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - M Aboian
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - J E McConathy
- Division of Molecular Imaging and Therapeutics (J.E.M.), Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - H Daldrup-Link
- Department of Radiology and Pediatrics (H.D.-L.), Stanford University School of Medicine, Palo Alto, California
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York
| |
Collapse
|
10
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
11
|
Malcolm JC, Falzone N, Gains JE, Aldridge MD, Mirando D, Lee BQ, Gaze MN, Vallis KA. Impact of cyclic changes in pharmacokinetics and absorbed dose in pediatric neuroblastoma patients receiving [ 177Lu]Lu-DOTATATE. EJNMMI Phys 2022; 9:24. [PMID: 35347483 PMCID: PMC8960523 DOI: 10.1186/s40658-022-00436-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Recent reports personalizing the administered activity (AA) of each cycle of peptide receptor radionuclide therapy based on the predicted absorbed dose (AD) to the kidneys (dose-limiting organ) have been promising. Assuming identical renal pharmacokinetics for each cycle is pragmatic, however it may lead to over- or under-estimation of the optimal AA. Here, we investigate the influence that earlier cycles of [177Lu]Lu-DOTATATE had on the biokinetics and AD of subsequent cycles in a recent clinical trial that evaluated the safety and activity of [177Lu]Lu-DOTATATE in pediatric neuroblastoma (NBL). We investigated whether predictions based on an assumption of unchanging AD per unit AA (Gy/GBq) prove robust to cyclical changes in biokinetics. METHODS A simulation study, based on dosimetry data from six children with NBL who received four-cycles of [177Lu]Lu-DOTATATE in the LuDO trial (ISRCTN98918118), was performed to explore the effect of variable biokinetics on AD. In the LuDO trial, AA was adapted to the patient's weight and SPECT/CT-based dosimetry was performed for the kidneys and tumour after each cycle. The largest tumour mass was selected for dosimetric analysis in each case. RESULTS The median tumour AD per cycle was found to decrease from 15.6 Gy (range 8.12-26.4) in cycle 1 to 11.4 Gy (range 9.67-28.8), 11.3 Gy (range 2.73-32.9) and 4.3 Gy (range 0.72-20.1) in cycles 2, 3 and 4, respectively. By the fourth cycle, the median of the ratios of the delivered AD (ADD) and the predicted (or "expected") AD (ADE) (which was based on an assumption of stable biokinetics from the first cycle onwards) were 0.16 (range 0.02-0.92, p = 0.013) for the tumour and 1.08 (range 0.84-1.76, p > 0.05) for kidney. None of the patients had an objective response at 1 month follow up. CONCLUSION This study demonstrates variability in Gy/GBq and tumour AD per cycle in children receiving four administrations of [177Lu]Lu-DOTATATE treatment for NBL. NBL is deemed a radiation sensitive tumour; therefore, dose-adaptive treatment planning schemes may be appropriate for some patients to compensate for decreasing tumour uptake as treatment progresses. Trial registration ISRCTN ISRCTN98918118. Registered 20 December 2013 (retrospectively registered).
Collapse
Affiliation(s)
- Javian C Malcolm
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nadia Falzone
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jennifer E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Matthew D Aldridge
- Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Boon Q Lee
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
12
|
Sundquist F, Georgantzi K, Jarvis KB, Brok J, Koskenvuo M, Rascon J, van Noesel M, Grybäck P, Nilsson J, Braat A, Sundin M, Wessman S, Herold N, Hjorth L, Kogner P, Granberg D, Gaze M, Stenman J. A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of 177Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-Risk Neuroblastoma-LuDO-N. Front Pediatr 2022; 10:836230. [PMID: 35359899 PMCID: PMC8960300 DOI: 10.3389/fped.2022.836230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Background Half the children with high-risk neuroblastoma die with widespread metastases. Molecular radiotherapy is an attractive systemic treatment for this relatively radiosensitive tumor. 131I-mIBG is the most widely used form in current use, but is not universally effective. Clinical trials of 177Lutetium DOTATATE have so far had disappointing results, possibly because the administered activity was too low, and the courses were spread over too long a period of time, for a rapidly proliferating tumor. We have devised an alternative administration schedule to overcome these limitations. This involves two high-activity administrations of single agent 177Lu-DOTATATE given 2 weeks apart, prescribed as a personalized whole body radiation absorbed dose, rather than a fixed administered activity. "A phase II trial of 177Lutetium-DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma - LuDO-N" (EudraCT No: 2020-004445-36, ClinicalTrials.gov Identifier: NCT04903899) evaluates this new dosing schedule. Methods The LuDO-N trial is a phase II, open label, multi-center, single arm, two stage design clinical trial. Children aged 18 months to 18 years are eligible. The trial is conducted by the Nordic Society for Pediatric Hematology and Oncology (NOPHO) and it has been endorsed by SIOPEN (https://www.siopen.net). The Karolinska University Hospital, is the sponsor of the LuDO-N trial, which is conducted in collaboration with Advanced Accelerator Applications, a Novartis company. All Scandinavian countries, Lithuania and the Netherlands participate in the trial and the UK has voiced an interest in joining in 2022. Results The pediatric use of the Investigational Medicinal Product (IMP) 177Lu-DOTATATE, as well as non-IMPs SomaKit TOC® (68Ga-DOTATOC) and LysaKare® amino acid solution for renal protection, have been approved for pediatric use, within the LuDO-N Trial by the European Medicines Agency (EMA). The trial is currently recruiting. Recruitment is estimated to be finalized within 3-5 years. Discussion In this paper we present the protocol of the LuDO-N Trial. The rationale and design of the trial are discussed in relation to other ongoing, or planned trials with similar objectives. Further, we discuss the rapid development of targeted radiopharmaceutical therapy and the future perspectives for developing novel therapies for high-risk neuroblastoma and other pediatric solid tumors.
Collapse
Affiliation(s)
- Fredrik Sundquist
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Kirsten Brunsvig Jarvis
- Department of Paediatric Haematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jesper Brok
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Minna Koskenvuo
- Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Max van Noesel
- Solid Tumor Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Joachim Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur Braat
- Department of Nuclear Medicine, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Mikael Sundin
- Division of Pediatrics, Department of Pediatric Hematology, Immunology and HCT, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Pathology, Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Hjorth
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jakob Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Thompson LDR, Bishop JA. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Nasal Cavity, Paranasal Sinuses and Skull Base. Head Neck Pathol 2022; 16:1-18. [PMID: 35312976 PMCID: PMC9018924 DOI: 10.1007/s12105-021-01406-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The World Health Organization Classification of Head and Neck Tumours recently published the 5th edition. There are new entities, emerging entities, and significant updates to the taxonomy and characterization of tumor and tumor-like lesions, specifically in this article as it relates to nasal cavity, paranasal sinuses and skull base. Importantly, the number of diagnostic entries has been reduced by creating category-specific chapters for soft tissue, hematolymphoid, melanocytic, neuroectodermal, and metastatic tumors. Bone and salivary gland tumors are also not separately reported in the sinonasal tract, but included in the jaw and salivary gland sections, respectively. Repetition of characteristic entities in each anatomic site was also reduced, instead highlighting only the unique features in each anatomic site. Two new entities (SWI/SNF complex-deficient sinonasal carcinomas and HPV-related multiphenotypic sinonasal carcinoma) will be highlighted in this review, with a discussion of several emerging entities. There is a short description of updated information for all 24 diagnostic entities included in this edition to allow the reader a snapshot of current state of knowledge, but to encourage more investigation and further broaden understanding of these diverse and rare entities.
Collapse
Affiliation(s)
- Lester D. R. Thompson
- Head and Neck Pathology Consultations, 22543 Ventura Boulevard, Ste 220 PMB1034, Woodland Hills, CA 91364 USA
| | - Justin A. Bishop
- University of Texas Southwestern Medical Center, Clements University Hospital, UH04.250, 6201 Harry Hines Blvd., Dallas, TX 75390 USA
| |
Collapse
|
14
|
Rufini V, Triumbari EKA, Garganese MC. Imaging adrenal medulla. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Biassoni L, Privitera L. 123I-Meta-Iodobenzylguanidine Single-Photon Emission Computerized Tomography/Computerized Tomography Scintigraphy in the Management of Neuroblastoma. Indian J Nucl Med 2021; 36:293-299. [PMID: 34658554 PMCID: PMC8481844 DOI: 10.4103/ijnm.ijnm_10_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2021] [Indexed: 11/04/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumor. High-risk neuroblastoma is the most frequent presentation with an overall survival of approximately 50%. 123I-meta-iodobenzylguanidine (123I-mIBG) scintigraphy in the assessment of the primary tumor and its metastases at diagnosis and after chemotherapy is a cornerstone imaging modality. In particular, the bulk of skeletal metastatic disease evaluated with 123I-mIBG at diagnosis and the following chemotherapy has a prognostic value. Currently, single-photon emission computerized tomography/computerised tomography (SPECT/CT) is considered a fundamental part of 123I-mIBG scintigraphy. 123I-mIBG SPECT/CT is a highly specific and sensitive imaging biomarker and it has been the basis of all existing neuroblastoma trials requiring molecular imaging. The introduction of SPECT/CT has shown not only the heterogeneity of the mIBG uptake within the primary tumor but also the presence of completely mIBG nonavid metastatic lesions with mIBG-avid primary neuroblastomas. It is currently possible to semi-quantitatively assess tracer uptake with standardized uptake value, which allows a more precise evaluation of the tracer avidity and can help monitor chemotherapy response. The patchy mIBG uptake has consequences from a theranostic perspective and may partly explain the failure of some neuroblastomas to respond to 131I-mIBG molecular radiotherapy. Various positron emission tomography tracers, targeting different aspects of neuroblastoma cell biology, are being tested as possible alternatives to 123I-mIBG.
Collapse
Affiliation(s)
- Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Laura Privitera
- Department of Developmental Biology and Cancer Research, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
16
|
Kashyap R, Reddy R, Prasanna V. Meningeal Relapse of Neuroblastoma-Utility of 68Ga-DOTATOC PET/CT for Detection. Clin Nucl Med 2021; 46:e339-e341. [PMID: 33512945 DOI: 10.1097/rlu.0000000000003495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In treatment of metastatic neuroblastoma, the central nervous system seems to act as a sanctuary leading to often unexpected relapse of disease. We present a case of neuroblastoma treated with chemotherapy and autologous stem cell transplantation only to relapse in central nervous system with meningeal metastases visualized on 68Ga-DOTATOC imaging.
Collapse
Affiliation(s)
| | | | - Veni Prasanna
- Pathology, Mahatma Gandhi Cancer Hospital and Research Institute, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
17
|
Samim A, Tytgat GA, Bleeker G, Wenker ST, Chatalic KL, Poot AJ, Tolboom N, van Noesel MM, Lam MG, de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med 2021; 11:jpm11040270. [PMID: 33916640 PMCID: PMC8066332 DOI: 10.3390/jpm11040270] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, nuclear medicine has been essential for the staging and response assessment of neuroblastoma. Currently, the standard nuclear imaging technique is meta-[123I]iodobenzylguanidine ([123I]mIBG) whole-body scintigraphy, usually combined with single-photon emission computed tomography with computed tomography (SPECT-CT). Nevertheless, 10% of neuroblastomas are mIBG non-avid and [123I]mIBG imaging has relatively low spatial resolution, resulting in limited sensitivity for smaller lesions. More accurate methods to assess full disease extent are needed in order to optimize treatment strategies. Advances in nuclear medicine have led to the introduction of radiotracers compatible for positron emission tomography (PET) imaging in neuroblastoma, such as [124I]mIBG, [18F]mFBG, [18F]FDG, [68Ga]Ga-DOTA peptides, [18F]F-DOPA, and [11C]mHED. PET has multiple advantages over SPECT, including a superior resolution and whole-body tomographic range. This article reviews the use, characteristics, diagnostic accuracy, advantages, and limitations of current and new tracers for nuclear medicine imaging in neuroblastoma.
Collapse
Affiliation(s)
- Atia Samim
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Godelieve A.M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Gitta Bleeker
- Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands;
| | - Sylvia T.M. Wenker
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Kristell L.S. Chatalic
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Alex J. Poot
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Nelleke Tolboom
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Max M. van Noesel
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Bart de Keizer
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-887-571-794
| |
Collapse
|
18
|
Haddad T, Fard-Esfahani A, Vali R. A review of pediatric neuroendocrine tumors, their detection, and treatment by radioisotopes. Nucl Med Commun 2021; 42:21-31. [PMID: 33044400 DOI: 10.1097/mnm.0000000000001305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumors (NETs) are rare in childhood. Neuroblastoma is the most common pediatric extracranial solid tumor, occurring >90% in children younger than 5 years of age. Pheochromocytoma and paraganglioma are rare NETs, causing hypertension in 0.5-2% of hypertensive children. Gastroenteropancreatic NETs can occur in children and are classified into carcinoids and pancreatic tumors. Nuclear medicine procedures have an essential role both in the diagnosis and treatment of NETs. Metaiodobenzylguanidine (MIBG) labeled with radioiodine has a well-established role in diagnosis as well as therapeutic management of the neuroblastoma group of diseases. During recent decades, establishing the abundant expression of somatostatin receptors by NETs first led to scintigraphy with somatostatin analogs (i.e. Tc/In-octreotide) and, later, with the emergence of positron-emitting labeled agents (i.e. Ga-DOTATATE/DOTATOC/DOTANOC) PET scans with significantly higher detection efficiency became available. Therapy with somatostatin analogs labeled with beta emitters such as Lu-177 and Y-90, known as peptide receptor radionuclide therapy, is a promising new option in the management of patients with inoperable or metastasized NETs. In this article, pediatric NETs are briefly reviewed and the role of radioactive agents in the detection and treatment of these tumors is discussed.
Collapse
Affiliation(s)
- Tara Haddad
- Diagnostic Imaging Department, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Armaghan Fard-Esfahani
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Vali
- Diagnostic Imaging Department, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Davis L, Smith AL, Aldridge MD, Foulkes J, Peet C, Wan S, Gains JE, Bomanji JB, Gaze MN. Personalisation of Molecular Radiotherapy through Optimisation of Theragnostics. J Pers Med 2020; 10:E174. [PMID: 33081161 PMCID: PMC7711590 DOI: 10.3390/jpm10040174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular radiotherapy, or targeted radionuclide therapy, uses systemically administered drugs bearing a suitable radioactive isotope, typically a beta emitter. These are delivered via metabolic or other physiological pathways to cancer cells in greater concentrations than to normal tissues. The absorbed radiation dose in tumour deposits causes chromosomal damage and cell death. A partner radiopharmaceutical, most commonly the same vector labelled with a different radioactive atom, with emissions suitable for gamma camera or positron emission tomography imaging, is used to select patients for treatment and to assess response. The use of these pairs of radio-labelled drugs, one optimised for therapy, the other for diagnostic purposes, is referred to as theragnostics. Theragnostics is increasingly moving away from a fixed number of defined activity administrations, to a much more individualised or personalised approach, with the aim of improving treatment outcomes, and minimising toxicity. There is, however, still significant scope for further progress in that direction. The main tools for personalisation are the following: imaging biomarkers for better patient selection; predictive and post-therapy dosimetry to maximise the radiation dose to the tumour while keeping organs at risk within tolerance limits; imaging for assessment of treatment response; individualised decision making and communication about radiation protection, adjustments for toxicity, inpatient and outpatient care.
Collapse
Affiliation(s)
- LauraMay Davis
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK; (L.D.); (A.-L.S.); (M.D.A.); (J.B.B.)
| | - April-Louise Smith
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK; (L.D.); (A.-L.S.); (M.D.A.); (J.B.B.)
| | - Matthew D. Aldridge
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK; (L.D.); (A.-L.S.); (M.D.A.); (J.B.B.)
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| | - Jack Foulkes
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| | - Connie Peet
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| | - Simon Wan
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| | - Jennifer E. Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| | - Jamshed B. Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK; (L.D.); (A.-L.S.); (M.D.A.); (J.B.B.)
| | - Mark N. Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK; (J.F.); (C.P.); (S.W.); (J.E.G.)
| |
Collapse
|