1
|
Puri T, Frost ML, Moore AEB, Choudhury A, Vinjamuri S, Mahajan A, Fynbo C, Vrist M, Theil J, Kairemo K, Wong J, Zaidi H, Revheim ME, Werner TJ, Alavi A, Cook GJR, Blake GM. Utility of a simplified [ 18F] sodium fluoride PET imaging method to quantify bone metabolic flux for a wide range of clinical applications. Front Endocrinol (Lausanne) 2023; 14:1236881. [PMID: 37780613 PMCID: PMC10534005 DOI: 10.3389/fendo.2023.1236881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
We review the rationale, methodology, and clinical utility of quantitative [18F] sodium fluoride ([18F]NaF) positron emission tomography-computed tomography (PET-CT) imaging to measure bone metabolic flux (Ki, also known as bone plasma clearance), a measurement indicative of the local rate of bone formation at the chosen region of interest. We review the bone remodelling cycle and explain what aspects of bone remodelling are addressed by [18F]NaF PET-CT. We explain how the technique works, what measurements are involved, and what makes [18F]NaF PET-CT a useful tool for the study of bone remodelling. We discuss how these measurements can be simplified without loss of accuracy to make the technique more accessible. Finally, we briefly review some key clinical applications and discuss the potential for future developments. We hope that the simplified method described here will assist in promoting the wider use of the technique.
Collapse
Affiliation(s)
- Tanuj Puri
- Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), The Institute of Cancer Research, Sutton, United Kingdom
| | - Amelia E. B. Moore
- Department of Cancer Imaging, and King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Ananya Choudhury
- Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sobhan Vinjamuri
- Nuclear Medicine Department, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Abhishek Mahajan
- The Clatterbridge Cancer Centre NHS Foundation Trust, University of Liverpool, Liverpool, United Kingdom
| | - Claire Fynbo
- Clinic of Nuclear Medicine, Gødstrup Hospital, Herning, Denmark
| | - Marie Vrist
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital, Herning, Denmark
| | - Jørn Theil
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kalevi Kairemo
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Wong
- Department of Anaesthesia, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Habib Zaidi
- Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva, Switzerland
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Oslo University Hospital, Norway Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Gary J. R. Cook
- Department of Cancer Imaging, and King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
2
|
Puri T, Frost ML, Cook GJ, Blake GM. [ 18F] Sodium Fluoride PET Kinetic Parameters in Bone Imaging. Tomography 2021; 7:843-854. [PMID: 34941643 PMCID: PMC8708178 DOI: 10.3390/tomography7040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This report describes the significance of the kinetic parameters (k-values) obtained from the analysis of dynamic positron emission tomography (PET) scans using the Hawkins model describing the pharmacokinetics of sodium fluoride ([18F]NaF) to understand bone physiology. Dynamic [18F]NaF PET scans may be useful as an imaging biomarker in early phase clinical trials of novel drugs in development by permitting early detection of treatment-response signals that may help avoid late-stage attrition.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, Sutton SM2 5NG, UK;
| | - Gary J. Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-7762717295
| |
Collapse
|
3
|
Puri T, Siddique MM, Frost ML, Moore AEB, Blake GM. A Short Dynamic Scan Method of Measuring Bone Metabolic Flux Using [ 18F]NaF PET. Tomography 2021; 7:623-635. [PMID: 34842815 PMCID: PMC8628944 DOI: 10.3390/tomography7040053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
[18F]NaF PET measurements of bone metabolic flux (Ki) are conventionally obtained with 60-min dynamic scans analysed using the Hawkins model. However, long scan times make this method expensive and uncomfortable for subjects. Therefore, we evaluated and compared measurements of Ki with shorter scan times analysed with fixed values of the Hawkins model rate constants. The scans were acquired in a trial in 30 postmenopausal women, half treated with teriparatide (TPT) and half untreated. Sixty-minute PET-CT scans of both hips were acquired at baseline and week 12 after injection with 180 MBq [18F]NaF. Scans were analysed using the Hawkins model by fitting bone time–activity curves at seven volumes of interest (VOIs) with a semi-population arterial input function. The model was re-run with fixed rate-constants for dynamic scan times from 0–12 min increasing in 4-min steps up to 0–60 min. Using the Hawkins model with fixed rate-constants, Ki measurements with statistical power equivalent or superior to conventionally analysed 60-min dynamic scans were obtained with scan times as short as 12 min.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
| | - Musib M. Siddique
- Radcliffe Department of Medicine, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK;
| | - Amelia E. B. Moore
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-77-6271-7295
| |
Collapse
|