1
|
Bouchareb Y, AlSaadi A, Zabah J, Jain A, Al-Jabri A, Phiri P, Shi JQ, Delanerolle G, Sirasanagandla SR. Technological Advances in SPECT and SPECT/CT Imaging. Diagnostics (Basel) 2024; 14:1431. [PMID: 39001321 PMCID: PMC11241697 DOI: 10.3390/diagnostics14131431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024] Open
Abstract
Single photon emission tomography/computed tomography (SPECT/CT) is a mature imaging technology with a dynamic role in the diagnosis and monitoring of a wide array of diseases. This paper reviews the technological advances, clinical impact, and future directions of SPECT and SPECT/CT imaging. The focus of this review is on signal amplifier devices, detector materials, camera head and collimator designs, image reconstruction techniques, and quantitative methods. Bulky photomultiplier tubes (PMTs) are being replaced by position-sensitive PMTs (PSPMTs), avalanche photodiodes (APDs), and silicon PMs to achieve higher detection efficiency and improved energy resolution and spatial resolution. Most recently, new SPECT cameras have been designed for cardiac imaging. The new design involves using specialised collimators in conjunction with conventional sodium iodide detectors (NaI(Tl)) or an L-shaped camera head, which utilises semiconductor detector materials such as CdZnTe (CZT: cadmium-zinc-telluride). The clinical benefits of the new design include shorter scanning times, improved image quality, enhanced patient comfort, reduced claustrophobic effects, and decreased overall size, particularly in specialised clinical centres. These noticeable improvements are also attributed to the implementation of resolution-recovery iterative reconstructions. Immense efforts have been made to establish SPECT and SPECT/CT imaging as quantitative tools by incorporating camera-specific modelling. Moreover, this review includes clinical examples in oncology, neurology, cardiology, musculoskeletal, and infection, demonstrating the impact of these advancements on clinical practice in radiology and molecular imaging departments.
Collapse
Affiliation(s)
- Yassine Bouchareb
- Department of Radiology & Molecular Imaging, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Afrah AlSaadi
- Department of Radiology & Molecular Imaging, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Jawa Zabah
- Department of Radiology & Molecular Imaging, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Anjali Jain
- Sultan Qaboos Comprehensive Cancer Care and Research Centre, Department of Radiology, Muscat 123, Oman
| | - Aziza Al-Jabri
- Department of Radiology & Molecular Imaging, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Peter Phiri
- Southern Health NHS Foundation Trust, Southampton SO40 2RZ, UK
- Psychology Department, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jian Qing Shi
- Southern Health NHS Foundation Trust, Southampton SO40 2RZ, UK
- Southern University of Science and Technology, Southampton, UK
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Gayathri Delanerolle
- Southern Health NHS Foundation Trust, Southampton SO40 2RZ, UK
- University of Birmingham, Birmingham, UK
| | - Srinivasa Rao Sirasanagandla
- Department of Human & Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Wang M, Dong S, Zhang R, Sun D, Wang S, Shen Y, Li N, Wang P, Tan J, Meng Z, Jia Q. Impact of reconstruction parameters on spatial resolution and its comparison between cadmium-zinc-telluride SPECT/CT and conventional SPECT/CT. Nucl Med Commun 2022; 43:8-16. [PMID: 34559760 DOI: 10.1097/mnm.0000000000001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the impact of reconstruction parameters on the spatial resolution of the tomographic image in single photon emission computed tomography (SPECT)/computed tomography (CT), and compare spatial resolution between a new polyvalent whole-body Cadmium-Zinc-Telluride camera (CZT-SPECT/CT) and a conventional dual-head Anger camera (conventional SPECT/CT). METHODS Spatial resolution was evaluated with four-line sources filled with 99mTc in tomographic images reconstructed by varying reconstruction parameters. Ordered-subset expectation maximization (OSEM) algorithm was performed with varying iterations (1-20), the number of subsets was fixed at 10. Butterworth filter, Gauss filter and no-filter were selected, respectively. Computed tomography-based attenuation correction (CTAC), scatter correction, resolution recovery and no correction (NC) were adopted for image correction. Filtered back projection (FBP) with Butterworth filter and CTAC was performed in image reconstruction. Spatial resolution was expressed by the full width at half-maximum (FWHM) value. RESULTS The impact of reconstruction parameters on the spatial resolution was identical in both cameras: FWHM values decreased with the increase of iterations and converged uniformly when the number of iterations was over 4. FWHM values decreased with the increase of cutoff frequency of the Butterworth filter and increased with the increase of the Gauss filter. scatter correction and resolution recovery improved spatial resolution, whereas CTAC had a negligible effect on spatial resolution when reconstructed by OSEM. FWHM was generally lower with OSEM reconstruction than FBP reconstruction. On the whole, under the same reconstruction conditions, CZT-SPECT/CT had a lower FWHM value than conventional SPECT/CT. CONCLUSION The spatial resolution was improved with the increase of iterations. Increasing the cutoff frequency of the Butterworth filter and decreasing the Gauss filter enhanced spatial resolution. The spatial resolution was better reconstructed by OSEM associated with attenuation correction, scatter correction and resolution recovery than FBP. CZT-SPECT/CT had better spatial resolution than conventional SPECT/CT.
Collapse
Affiliation(s)
- Miao Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Flux G, Leek F, Gape P, Gear J, Taprogge J. Iodine-131 and Iodine-131-Meta-iodobenzylguanidine Dosimetry in Cancer Therapy. Semin Nucl Med 2021; 52:167-177. [PMID: 34961618 DOI: 10.1053/j.semnuclmed.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radioactive iodine was first used for the treatment of benign thyroid disease and thyroid cancer 80 years ago. I-131 mIBG was later developed for the treatment of adult and pediatric neuroendocrine tumors. Physicists were closely involved from the outset to measure retention, to quantify uptake and to calculate radiation dosimetry. As the treatment became widespread, contrasting treatment regimes were followed, either given with empirically derived fixed levels of activity or guided according to the radiation doses delivered. As for external beam radiotherapy, individualized treatments for both thyroid cancer and neuroendocrine tumors were developed based on the aim of maximizing the radiation doses delivered to target volumes while restricting the radiation doses delivered to organs-at-risk, particularly the bone marrow. The challenge of marrow dosimetry has been met by using surrogate measures, often the blood dose for thyroid treatments and the whole-body dose in the case of treatment of neuroblastoma with I-131 mIBG. A number of studies have sought to establish threshold absorbed doses to ensure therapeutic efficacy. Although different values have been postulated, it has nevertheless been conclusively demonstrated that a fixed activity approach leads to a wide range of absorbed doses delivered to target volumes and to normal organs. Personalized treatment planning is now technically feasible with ongoing multicenter clinical trials and investigations into image quantification, biokinetic modelling and radiobiology.
Collapse
Affiliation(s)
- Glenn Flux
- Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK.
| | - Francesca Leek
- Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Paul Gape
- Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jan Taprogge
- Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| |
Collapse
|
4
|
Bardiès M, Gear JI. Scientific Developments in Imaging and Dosimetry for Molecular Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 33:117-124. [PMID: 33281018 DOI: 10.1016/j.clon.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
Molecular radiotherapy is a rapidly developing field with new vector and isotope combinations continually added to market. As with any radiotherapy treatment, it is vital that the absorbed dose and toxicity profile are adequately characterised. Methodologies for absorbed dose calculations for radiopharmaceuticals were generally developed to characterise stochastic effects and not suited to calculations on a patient-specific basis. There has been substantial scientific and technological development within the field of molecular radiotherapy dosimetry to answer this challenge. The development of imaging systems and advanced processing techniques enable the acquisition of accurate measurements of radioactivity within the body. Activity assessment combined with dosimetric models and radiation transport algorithms make individualised absorbed dose calculations not only feasible, but commonplace in a variety of commercially available software packages. The development of dosimetric parameters beyond the absorbed dose has also allowed the possibility to characterise the effect of irradiation by including biological parameters that account for radiation absorbed dose rates, gradients and spatial and temporal energy distribution heterogeneities. Molecular radiotherapy is in an exciting time of its development and the application of dosimetry in this field can only have a positive influence on its continued progression.
Collapse
Affiliation(s)
- M Bardiès
- Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, France; INSERM UMR 1037 Université Toulouse III Paul Sabatier, Toulouse, France
| | - J I Gear
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK.
| |
Collapse
|
5
|
Gear J, Chiesa C, Lassmann M, Gabiña PM, Tran-Gia J, Stokke C, Flux G. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys 2020; 7:15. [PMID: 32144574 PMCID: PMC7060302 DOI: 10.1186/s40658-020-0282-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 11/23/2022] Open
Abstract
The purpose of the EANM Dosimetry Committee Series on "Standard Operational Procedures for Dosimetry" (SOP) is to provide advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This SOP describes image and data acquisition parameters and dosimetry calculations to determine the absorbed doses delivered to whole-body, tumour and normal organs following a therapeutic administration of 131I mIBG for the treatment of neuroblastoma or adult neuroendocrine tumours. Recommendations are based on evidence in recent literature where available and on expert opinion within the community. This SOP is intended to promote standardisation of practice within the community and as such is based on the facilities and expertise that should be available to any centre able to perform specialised treatments with radiopharmaceuticals and patient-specific dosimetry. A clinical example is given to demonstrate the application of the absorbed dose calculations.
Collapse
Affiliation(s)
- Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK.
| | - Carlo Chiesa
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, 97080, Würzburg, Germany
| | - Pablo Mínguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University of Würzburg, 97080, Würzburg, Germany
| | - Caroline Stokke
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| |
Collapse
|
6
|
Ross JC, Vilić D, Sanderson T, Vöö S, Dickson J. Does quantification have a role to play in the future of bone SPECT? Eur J Hybrid Imaging 2019; 3:8. [PMID: 34191209 PMCID: PMC8218028 DOI: 10.1186/s41824-019-0054-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/26/2022] Open
Abstract
Routinely, there is a visual basis to nuclear medicine reporting: a reporter subjectively places a patient's condition into one of multiple discrete classes based on what they see. The addition of a quantitative result, such as a standardised uptake value (SUV), would provide a numerical insight into the nature of uptake, delivering greater objectivity, and perhaps improved patient management.For bone scintigraphy in particular quantification could increase the accuracy of diagnosis by helping to differentiate normal from abnormal uptake. Access to quantitative data might also enhance our ability to characterise lesions, stratify and monitor patients' conditions, and perform reliable dosimetry for radionuclide therapies. But is there enough evidence to suggest that we, as a community, should be making more effort to implement quantitative bone SPECT in routine clinical practice?We carried out multiple queries through the PubMed search engine to facilitate a cross-sectional review of the current status of bone SPECT quantification. Highly cited papers were assessed in more focus to scrutinise their conclusions.An increasing number of authors are reporting findings in terms of metrics such as SUVmax. Although interest in the field in general remains high, the rate of clinical implementation of quantitative bone SPECT remains slow and there is a significant amount of validation required before we get carried away.
Collapse
Affiliation(s)
- James C. Ross
- Institute of Nuclear Medicine T05, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU UK
| | - Dijana Vilić
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine T05, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU UK
| | - Stefan Vöö
- Institute of Nuclear Medicine T05, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU UK
| | - John Dickson
- Institute of Nuclear Medicine T05, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU UK
- Institute of Nuclear Medicine, University College London, London, UK
| |
Collapse
|
7
|
|
8
|
Badger D, Barnden L. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:551-7. [PMID: 25005848 DOI: 10.1007/s13246-014-0287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.
Collapse
Affiliation(s)
- Daniel Badger
- The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia,
| | | |
Collapse
|