1
|
Yang Y, Wang J, Wan J, Cheng Q, Cheng Z, Zhou X, Wang O, Shi K, Wang L, Wang B, Zhu X, Chen J, Feng D, Liu Y, Jahan-Mihan Y, Haddock AN, Edenfield BH, Peng G, Hohenstein JD, McCabe CE, O'Brien DR, Wang C, Ilyas SI, Jiang L, Torbenson MS, Wang H, Nakhleh RE, Shi X, Wang Y, Bi Y, Gores GJ, Patel T, Ji B. PTEN deficiency induces an extrahepatic cholangitis-cholangiocarcinoma continuum via aurora kinase A in mice. J Hepatol 2024; 81:120-134. [PMID: 38428643 PMCID: PMC11259013 DOI: 10.1016/j.jhep.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND & AIMS The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA; Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Kelvin Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lingxiang Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chantal E McCabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel R O'Brien
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raouf E Nakhleh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xuemei Shi
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Manzano-Núñez F, Prates Tiago Aguilar L, Sempoux C, Lemaigre FP. Biliary Tract Cancer: Molecular Biology of Precursor Lesions. Semin Liver Dis 2023; 43:472-484. [PMID: 37944999 DOI: 10.1055/a-2207-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.
Collapse
Affiliation(s)
| | | | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
4
|
Li M, Zhou X, Wang W, Ji B, Shao Y, Du Q, Yao J, Yang Y. Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. J Clin Transl Hepatol 2022; 10:700-710. [PMID: 36062286 PMCID: PMC9396327 DOI: 10.14218/jcth.2021.00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive biliary tree malignancy with intrahepatic and extra-hepatic subtypes that differ in molecular pathogeneses, epidemiology, clinical manifestations, treatment, and prognosis. The overall prognosis and patient survival remains poor because of lack of early diagnosis and effective treatments. Preclinical in vivo studies have become increasingly paramount as they are helpful not only for the study of the fundamental molecular mechanisms of CCA but also for developing novel and effective therapeutic approaches of this fatal cancer. Recent advancements in cell and molecular biology have made it possible to mimic the pathogenicity of human CCA in chemical-mechanical, infection-induced inflammatory, implantation, and genetically engineered animal models. This review is intended to help investigators understand the particular strengths and weaknesses of the currently used in vivo animal models of human CCA and their related modeling techniques to aid in the selection of the one that is the best for their research needs.
Collapse
Affiliation(s)
- Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinghao Yao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Correspondence to: Yan Yang, Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China. ORCID: https://orcid.org/0000-0003-0887-2770. Tel: +86-552-3086178, Fax: +86-552-3074480, E-mail:
| |
Collapse
|