1
|
Tan N, Lubel J, Kemp W, Roberts S, Majeed A. Current Therapeutics in Primary Sclerosing Cholangitis. J Clin Transl Hepatol 2023; 11:1267-1281. [PMID: 37577219 PMCID: PMC10412694 DOI: 10.14218/jcth.2022.00068s] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 07/03/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an orphan, cholestatic liver disease that is characterized by inflammatory biliary strictures with variable progression to end-stage liver disease. Its pathophysiology is poorly understood. Chronic biliary inflammation is likely driven by immune dysregulation, gut dysbiosis, and environmental exposures resulting in gut-liver crosstalk and bile acid metabolism disturbances. There is no proven medical therapy that alters disease progression in PSC, with the commonly prescribed ursodeoxycholic acid being shown to improve liver biochemistry at low-moderate doses (15-23 mg/kg/day) but not alter transplant-free survival or liver-related outcomes. Liver transplantation is the only option for patients who develop end-stage liver disease or refractory complications of PSC. Immunosuppressive and antifibrotic agents have not proven to be effective, but there is promise for manipulation of the gut microbiome with fecal microbiota transplantation and antibiotics. Bile acid manipulation via alternate synthetic bile acids such as norursodeoxycholic acid, or interaction at a transcriptional level via nuclear receptor agonists and fibrates have shown potential in phase II trials in PSC with several leading to larger phase III trials. In view of the enhanced malignancy risk, statins, and aspirin show potential for reducing the risk of colorectal cancer and cholangiocarcinoma in PSC patients. For patients who develop clinically relevant strictures with cholestatic symptoms and worsening liver function, balloon dilatation is safer compared with biliary stent insertion with equivalent clinical efficacy.
Collapse
Affiliation(s)
- Natassia Tan
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - John Lubel
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - William Kemp
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart Roberts
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Bartoli A, Cursaro C, Seferi H, Andreone P. Secondary Sclerosing Cholangitis After SARS-CoV2: ICU Ketamine Use or Virus-Specific Biliary Tropism and Injury in the Context of Biliary Ischemia in Critically Ill Patients? Hepat Med 2023; 15:93-112. [PMID: 37547355 PMCID: PMC10404108 DOI: 10.2147/hmer.s384220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose From the beginning of the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV2) pandemic, different cases of a cholangiopathy with features of secondary sclerosing cholangitis in critically ill patients (SSC-CIP) have been reported. Patients developing it are generally recovering from severe Coronavirus disease 19 (COVID-19) and required intensive care unit (ICU) admission and mechanical ventilation. Many of them have been administered with ketamine during their ICU stay. The pathogenesis of this novel disease is still debated, and, since prognosis is poor, efforts are needed in order to better understand it. Patients and Methods In this review, we focused our attention on COVID-19 SSC clinical, imaging, and histology findings in order to clarify the different pathogenetic options, particularly in regard of the ischemic-direct viral damage and ketamine-related theories, beginning with a recapitulation of SSC-CIP and ketamine-induced cholangiopathy in abusers. The research has been conducted using PubMed and Google Scholar databases. Key-words were "Secondary Sclerosing Cholangiopathy", "SSC-CIP", "Secondary Sclerosing Cholangiopathy in critically ill patients", "Ketamine and cholangiopathy", "Ketamine abusers and liver disease", "Ketamine-related cholangiopathy", "SARS-CoV2 infection and liver disease", "post Covid-19 secondary sclerosing cholangitis", "Covid-19 cholangiopathy". Results Many authors, based on the clinical, histological, imaging, and prognostic features of the disease, have pointed out the similarities between post COVID-19 SSC and SSC-CIP; however, peculiar features in the former were not previously observed. Therefore, a direct viral cytopathic action and SARS-CoV2-related coagulopathy are considered the most likely causes. On the other hand, ketamine, with the available data, cannot be surely linked as the main determinant cause of cholangiopathy. Moreover, ketamine-induced cholangitis (KIC) presentation is different from post COVID-19 SSC. Its role as a cofactor precipitating the disease cannot be ruled out. Conclusion Post COVID-19 SSC is a rare clinical entity following severe COVID-19 disease. The most accepted theory is that a sum of different insults determines the disease: biliary ischemia, direct viral damage, toxic bile, possibly worsened by ketamine and hyperinflammation due to the cytokine storm. Given the severe prognosis of the disease, with persistent cholangiopathy, organ failure, and orthotopic liver transplantation (OLT), further study on this novel clinical entity is needed.
Collapse
Affiliation(s)
- Alessandra Bartoli
- Division of Internal Medicine and Metabolism, Department of Internal Medicine, Ospedale Civile di Baggiovara, University of Modena and Reggio Emilia, Modena, Italy
- Post Graduate School of Allergy and Clinical Immunology, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmela Cursaro
- Division of Internal Medicine and Metabolism, Department of Internal Medicine, Ospedale Civile di Baggiovara, University of Modena and Reggio Emilia, Modena, Italy
| | - Hajrie Seferi
- Division of Internal Medicine and Metabolism, Department of Internal Medicine, Ospedale Civile di Baggiovara, University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Andreone
- Chief of Division of Internal Medicine and metabolism, Department of Internal Medicine, University Hospital of Modena, Modena, Italy
- Chief of Post Graduate School of Allergy and Clinical Immunology, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Herta T, Beuers U. A historical review of jaundice: May the golden oriole live forever. Clin Liver Dis (Hoboken) 2022; 20:45-56. [PMID: 36518790 PMCID: PMC9742756 DOI: 10.1002/cld.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Content available: Audio Recording.
Collapse
Affiliation(s)
- Toni Herta
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal ResearchAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal ResearchAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
5
|
Zarei K, Thornell IM, Stoltz DA. Anion Transport Across Human Gallbladder Organoids and Monolayers. Front Physiol 2022; 13:882525. [PMID: 35685290 PMCID: PMC9171199 DOI: 10.3389/fphys.2022.882525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fluid and anion secretion are important functions of the biliary tract. It has been established that cAMP regulates Na+ absorption through NHE3. However, mechanisms of gallbladder anion transport are less defined. We created organoids and organoid-derived monolayers from human gallbladder tissue to measure organoid swelling and transepithelial electrophysiology. In our in vitro models, forskolin-stimulation caused organoid swelling and increased transepithelial anion transport. Full organoid swelling required Cl−while changes in short-circuit current were HCO3−-dependent. Organoids and monolayers from an individual homozygous for the cystic fibrosis-causing ΔF508 CFTR mutation had no apical expression of CFTR and minimal changes in transepithelial current and conductance with forskolin treatment. However, organoid swelling remained intact. Dilution potential studies revealed that forskolin treatment increased the paracellular permeability to anions relative to cations. These data suggest a novel paracellular contribution to forskolin-stimulated fluid transport across the gallbladder epithelium.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ian M Thornell
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine,, Iowa City, IA, United States
| |
Collapse
|
6
|
Scott J, Jones AM, Piper Hanley K, Athwal VS. Review article: epidemiology, pathogenesis and management of liver disease in adults with cystic fibrosis. Aliment Pharmacol Ther 2022; 55:389-400. [PMID: 35048397 DOI: 10.1111/apt.16749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cystic fibrosis-related liver disease (CFLD) is the leading cause of death in cystic fibrosis (CF), after pulmonary disease. To improve identification and management of this condition requires an understanding of the underlying disease mechanism. AIMS This review summarises the current understanding of CFLD epidemiology, pathology, diagnosis and management. METHODS Relevant reports on cystic fibrosis liver disease were identified using a literature search and summarised. RESULTS CFLD is a heterogeneous condition with several different co-existent pathologies, including environmental and genetic factors. Incidence of clinically significant CFLD continues at a linear rate into early adulthood and has been described in up to 25% of CF patients. Diagnosis strategies lack precision and patient risk stratification needs to look beyond Childs-Pugh scoring. Efficacious therapies are lacking and, at present, newer modulator therapies lack data in CFLD and carry an increased risk of hepatotoxicity. Outcomes of liver transplant are comparable to non-CF transplant indications. CONCLUSIONS The incidence of CFLD increases with age and hence is increasingly important to adult patients with CF. Effective therapies are lacking. For progress to be made a better understanding of pathogenesis and disease detection are required.
Collapse
Affiliation(s)
- Jennifer Scott
- Division of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew M Jones
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust UK, Manchester, UK
| | - Karen Piper Hanley
- Division of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Varinder S Athwal
- Division of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Bijvelds MJC, Roos FJM, Meijsen KF, Roest HP, Verstegen MMA, Janssens HM, van der Laan LJW, de Jonge HR. Rescue of chloride and bicarbonate transport by elexacaftor-ivacaftor-tezacaftor in organoid-derived CF intestinal and cholangiocyte monolayers. J Cyst Fibros 2021; 21:537-543. [PMID: 34922851 DOI: 10.1016/j.jcf.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.
Collapse
Affiliation(s)
- Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands.
| | - Floris J M Roos
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Kelly F Meijsen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, the Netherlands
| |
Collapse
|
8
|
Bessone F, Hernández N, Tanno M, Roma MG. Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics. Semin Liver Dis 2021; 41:331-348. [PMID: 34130334 DOI: 10.1055/s-0041-1729972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nelia Hernández
- Clínica de Gastroenterología, Hospital de Clínicas y Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mario Tanno
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
9
|
Roos FJM, Bijvelds MJC, Verstegen MMA, Roest HP, Metselaar HJ, Polak WG, Jonge HRD, IJzermans JNM, van der Laan LJW. Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids. Am J Physiol Gastrointest Liver Physiol 2021; 320:G741-G752. [PMID: 33655768 DOI: 10.1152/ajpgi.00389.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholangiocytes express cystic fibrosis transmembrane conductance regulator (CFTR), which is involved in bicarbonate secretion for the protection against bile toxicity. During liver transplantation, prolonged hypoxia of the graft is associated with cholangiocyte loss and biliary complications. Hypoxia is known to diminish CFTR activity in the intestine, but whether it affects CFTR activity in cholangiocytes remains unknown. Thus, the aim of this study is to investigate the effect of hypoxia on CFTR activity in intrahepatic cholangiocyte organoids (ICOs) and test drug interventions to restore bicarbonate secretion. Fifteen different human ICOs were cultured as monolayers and ion channel [CFTR and anoctamin-1 (ANO1)] activity was determined using an Ussing chamber assay with or without AMP kinase (AMPK) inhibitor under hypoxic and oxygenated conditions. Bile toxicity was tested by apical exposure of cells to fresh human bile. Overall gene expression analysis showed a high similarity between ICOs and primary cholangiocytes. Under oxygenated conditions, both CFTR and ANO1 channels were responsible for forskolin and uridine-5'-triphosphate (UTP) UTP-activated anion secretion. Forskolin stimulation in the absence of intracellular chloride showed ion transport, indicating that bicarbonate could be secreted by CFTR. During hypoxia, CFTR activity significantly decreased (P = 0.01). Switching from oxygen to hypoxia during CFTR measurements reduced CFTR activity (P = 0.03). Consequently, cell death increased when ICO monolayers were exposed to bile during hypoxia compared with oxygen (P = 0.04). Importantly, addition of AMPK inhibitor restored CFTR-mediated anion secretion during hypoxia. ICOs provide an excellent model to study cholangiocyte anion channels and drug-related interventions. Here, we demonstrate that hypoxia affects cholangiocyte ion secretion, leaving cholangiocytes vulnerable to bile toxicity. The mechanistic insights from this model maybe relevant for hypoxia-related biliary injury during liver transplantation.NEW & NOTEWORTHY The previously described liver-derived organoids resemble primary cholangiocytes and should be properly named intrahepatic cholangiocyte organoids (ICOs). ICOs have functional cholangiocyte ion channels (CFTR and ANO1). CFTR might be able to secrete bicarbonate directly into the bile duct lumen. Hypoxia inhibits CFTR and ANO1 functionality in ICOs, which can partially be restored by addition of an AMP kinase inhibitor. Hypoxia impairs cholangiocyte resistance against cytotoxic effects of bile, resulting in increased cell death.
Collapse
Affiliation(s)
- Floris J M Roos
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Henk P Roest
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wojciech G Polak
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Transplant Institute, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
10
|
The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities. J Clin Med 2021; 10:jcm10081763. [PMID: 33919600 PMCID: PMC8073106 DOI: 10.3390/jcm10081763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are two chronic cholestatic liver diseases affecting bile ducts that may progress to biliary cirrhosis. In the past few years, the increasing knowledge in the pathogenesis of both diseases led to a growing number of clinical trials and possible new targets for therapy. In this review, we provide an update on the treatments in clinical use and summarize the new drugs in trials for PBC and PSC patients. Farnesoid X Receptor (FXR) agonists and Pan-Peroxisome Proliferator-Activated Receptor (PPAR) agonists are the most promising agents and have shown promising results in both PBC and PSC. Fibroblast Growth Factor 19 (FGF19) analogues also showed good results, especially in PBC, while, although PBC and PSC are autoimmune diseases, immunosuppressive drugs had disappointing effects. Since the gut microbiome could have a potential role in the pathogenesis of PSC, recent research focused on molecules that could change the microbiome, with good results. The near future of the medical management of these diseases may include new treatments or a combination of multiple drugs targeting different signaling pathways at different stages of the diseases.
Collapse
|
11
|
Sanyal AJ, Ling L, Beuers U, DePaoli AM, Lieu HD, Harrison SA, Hirschfield GM. Potent suppression of hydrophobic bile acids by aldafermin, an FGF19 analogue, across metabolic and cholestatic liver diseases. JHEP Rep 2021; 3:100255. [PMID: 33898959 PMCID: PMC8056274 DOI: 10.1016/j.jhepr.2021.100255] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Higher serum bile acid levels are associated with an increased risk of cirrhosis and liver-related morbidity and mortality. Herein, we report secondary analyses of aldafermin, an engineered analogue of the gut hormone fibroblast growth factor 19, on the circulating bile acid profile in prospective, phase II studies in patients with metabolic or cholestatic liver disease. Methods One hundred and seventy-six patients with biopsy-confirmed non-alcoholic steatohepatitis (NASH) and fibrosis and elevated liver fat content (≥8% by magnetic resonance imaging-proton density fat fraction) received 0.3 mg (n = 23), 1 mg (n = 49), 3 mg (n = 49), 6 mg (n = 28) aldafermin or placebo (n = 27) for 12 weeks. Sixty-two patients with primary sclerosing cholangitis (PSC) and elevated alkaline phosphatase (>1.5× upper limit of normal) received 1 mg (n = 21), 3 mg (n = 21) aldafermin or placebo (n = 20) for 12 weeks. Serum samples were collected on day 1 and week 12 for determination of bile acid profile and neoepitope-specific N-terminal pro-peptide of type III collagen (Pro-C3), a direct measure of fibrogenesis. Results Treatment with aldafermin resulted in significant dose-dependent reductions in serum bile acids. In particular, bile acids with higher hydrophobicity indices, such as deoxycholic acid, lithocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, and glycocholic acid, were markedly lowered by aldafermin in both NASH and PSC populations. Moreover, aldafermin predominantly suppressed the glycine-conjugated bile acids, rather than the taurine-conjugated bile acids. Changes in levels of bile acids correlated with changes in the novel fibrogenesis marker Pro-C3, which detects a neo-epitope of the type III collagen during its formation, in the pooled NASH and PSC populations. Conclusions Aldafermin markedly reduced major hydrophobic bile acids that have greater detergent activity and cytotoxicity. Our data provide evidence that bile acids may contribute to sustaining a pro-fibrogenic microenvironment in the liver across metabolic and cholestatic liver diseases. Lay summary Aldafermin is an analogue of a gut hormone, which is in development as a treatment for patients with chronic liver disease. Herein, we show that aldafermin can potently and robustly suppress the toxic, hydrophobic bile acids irrespective of disease aetiology. The therapeutic strategy utilising aldafermin may be broadly applicable to other chronic gastrointestinal and liver disorders. Clinical Trials Registration The study is registered at Clinicaltrials.govNCT02443116 and NCT02704364. Higher serum bile acid levels are associated with an increased risk of liver-related morbidity and mortality. Aldafermin produces significant dose-dependent reductions in toxic hydrophobic bile acids in NASH and PSC. Changes in bile acids correlate with changes in the novel fibrogenesis marker Pro-C3. Bile acids may contribute to a pro-fibrogenic microenvironment in the liver.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BAAT, bile acid-CoA:amino acid N-acyltransferase
- Bile acid synthesis
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- DCA, deoxycholic acid
- ELF test, Enhanced Liver Fibrosis test
- FGF19, fibroblast growth factor 19
- FXR, farnesoid X receptor
- Fibroblast growth factor
- Fibrogenesis
- G/T ratio, ratio of glycine to taurine conjugates of bile acids
- GCA, glycocholic acid
- GCDCA, glycochenodeoxycholic acid
- GDCA, glycodeoxycholic acid
- GLCA, glycolithocholic acid
- LCA, lithocholic acid
- MRI-PDFF, magnetic resonance imaging-proton density fat fraction
- NAFLD, non-alcoholic fatty liver disease
- NAS, non-alcoholic fatty liver disease activity score
- NASH CRN, NASH Clinical Research Network
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic steatohepatitis
- PSC, primary sclerosing cholangitis
- Primary sclerosing cholangitis
- Pro-C3
- Pro-C3, neoepitope-specific N-terminal pro-peptide of type III collagen
- TCA, taurocholic acid
- TCDCA, taurochenodeoxycholic acid
- TDCA, taurodeoxycholic acid
- TLCA, taurolithocholic acid
- UDCA, ursodeoxycholic acid
Collapse
Affiliation(s)
| | - Lei Ling
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Ulrich Beuers
- Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | | | - Hsiao D Lieu
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Pinnacle Clinical Research, San Antonio, TX, USA
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Gaurav R, Atulugama N, Swift L, Butler AJ, Upponi S, Brais R, Allison M, Watson CJE. Bile Biochemistry Following Liver Reperfusion in the Recipient and Its Association With Cholangiopathy. Liver Transpl 2020; 26:1000-1009. [PMID: 32108995 PMCID: PMC7497270 DOI: 10.1002/lt.25738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022]
Abstract
Cholangiocytes secrete bicarbonate and absorb glucose, producing bile with alkaline pH and low glucose content. These functions of cholangiocytes have been suggested as a marker of bile duct viability during normothermic ex situ liver perfusion, and they are now monitored routinely after reperfusion in our center. In this study, we reviewed the composition of bile immediately after reperfusion in liver transplant recipients to determine normal posttransplant parameters and the predictive value of bile biochemistry for the later development of cholangiopathy. After reperfusion of the liver graft, a cannula was placed in the bile duct to collect bile over a median 44-minute time period. The bile produced was analyzed using a point-of-care blood gas analyzer (Cobas b221, Roche Diagnostics, Indianapolis, IN). A total of 100 liver transplants (35 from donation after circulatory death and 65 from donation after brain death) were studied. Median bile pH was 7.82 (interquartile range [IQR], 7.67-7.98); median bile glucose was 2.1 (1.4-3.7) mmol/L; median blood-bile-blood pH difference was 0.50 (0.37-0.62); and median blood-bile glucose difference was 7.1 (5.6-9.1) mmol/L. There were 12 recipients who developed cholangiopathy over a median follow-up of 15 months (IQR, 11-20 months). Bile sodium (142 versus 147 mmol/L; P = 0.02) and blood-bile glucose concentration differences (5.2 versus 7.6 mmol/L; P = 0.001) were significantly lower and were associated with ischemic cholangiopathy. In conclusion, bile biochemistry may provide useful insights into cholangiocyte function and, hence, bile duct viability. Our results suggest bile glucose is the most sensitive predictor of cholangiopathy.
Collapse
Affiliation(s)
- Rohit Gaurav
- Cambridge Transplant UnitAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Niroshan Atulugama
- Cambridge Transplant UnitAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Lisa Swift
- Cambridge Transplant UnitAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Andrew J. Butler
- Cambridge Transplant UnitAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of RadiologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of PathologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Sara Upponi
- Department of PathologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of MedicineAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Rebecca Brais
- Department of PathologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of SurgeryAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| | - Michael Allison
- Department of PathologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,National Institute for Health Research Cambridge Biomedical Research Centre and the National Institute for Health Research Blood and Transplant Research in Organ Donation and TransplantationNational Health Service Blood and Transplant at University of Cambridge and Newcastle UniversityCambridgeUnited Kingdom
| | - Christopher J. E. Watson
- Cambridge Transplant UnitAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of RadiologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom,Department of PathologyAddenbrooke’s HospitalCambridge University Hospitals National Health Service TrustCambridgeUnited Kingdom
| |
Collapse
|
13
|
Ronca V, Mancuso C, Milani C, Carbone M, Oo YH, Invernizzi P. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J Leukoc Biol 2020; 108:659-671. [PMID: 32349179 DOI: 10.1002/jlb.5mr0320-200r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Ye Htun Oo
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
14
|
Theise ND, Crawford JM, Nakanuma Y, Quaglia A. Canal of Hering loss is an initiating step for primary biliary cholangitis (PBC): A hypothesis. Med Hypotheses 2020; 140:109680. [PMID: 32240960 DOI: 10.1016/j.mehy.2020.109680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
The origin and initiating features of PBC remain obscure despite decades of study. However, recent papers have demonstrated loss of canals of Hering (CoH) to be the earliest histologic change in liver biopsy specimens from patients with primary biliary cholangitis (PBC). We posit that CoH loss prior to significant inflammation or evidence of bile duct injury might be a very early, perhaps even an initiating lesion of PBC. As a potential target of inflammatory or toxic injury, CoH loss may initiate rather than follow the cascade of events leading to duct injury and loss and their sequelae. Toxins may be exogenous in origin, such as environmental toxins or drug exposures, or endogenous, resulting from genetic or epigenetic alterations in canalicular bile transporters upstream from the CoH. In turn, this hypothesis suggests that loss of CoH would lead to altered bile flow and composition injurious to downstream bile ducts, because bile composition has not been modulated by normal CoH physiologic functions or because, in the absence of CoH, canalicular fluid flow into the biliary tree is disrupted interfering with soluble trophic factors important for bile duct integrity. Regardless of the pathogenic mechanism causing CoH loss, only following such loss would the characteristic diagnostic findings of PBC become evident: damage to downstream interlobular and sub-lobular bile ducts. To the extent that the causal mechanisms for CoH loss can be identified, clinical identification (as through early identification of CoH loss) and intervention (depending on the inciting cause) may offer promise for treatment of this enigmatic disease.
Collapse
Affiliation(s)
- Neil D Theise
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui 918-8503, Japan
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
15
|
Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2869138. [PMID: 32104192 PMCID: PMC7040404 DOI: 10.1155/2020/2869138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dysfunction, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC. This review summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl− channels, Cl−/HCO3− exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Cystic fibrosis (CF; OMIM 219700) is caused by variations in the cystic fibrosis transmembrane conductance regulator gene. CF-related liver disease (CFLD) affects approximately one-third of patients with CF, but the severity of CFLD is highly variable. This review provides the latest knowledge in the pathophysiology and CF genetic modifier research in CFLD. RECENT FINDINGS So far, the only modifier gene validated in CFLD is SERPINA1 (α-1-antitrypsin) Z allele. Recent studies support the view that cholangiopathy arising in CF is the result of an ill-adapted innate immune response to endotoxins coming from the intestine and triggering a pro-inflammatory response. SUMMARY The pathophysiology of liver disease remains uncertain and so far, no therapy has proven effective to prevent the progression of CFLD. A better understanding of the pathophysiology and the effect of environmental and non-cystic fibrosis transmembrane conductance regulator genetic influences in the context of CFLD development would help improve management and develop new drug therapies.
Collapse
|
17
|
Goldstein J, Levy C. Novel and emerging therapies for cholestatic liver diseases. Liver Int 2018; 38:1520-1535. [PMID: 29758112 DOI: 10.1111/liv.13880] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
While bile acids are important for both digestion and signalling, hydrophobic bile acids can be harmful, especially when in high concentrations. Mechanisms for the protection of cholangiocytes against bile acid cytotoxicity include negative feedback loops via farnesoid X nuclear receptor (FXR) activation, the bicarbonate umbrella, cholehepatic shunting and anti-inflammatory signalling, among others. By altering or overwhelming these defence mechanisms, cholestatic diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) can further progress to biliary cirrhosis, end-stage liver disease and death or liver transplantation. While PBC is currently treated with ursodeoxycholic acid (UDCA) and obeticholic acid (OCA), many fail treatment, and we have yet to find an effective therapy for PSC. Novel therapies under evaluation target nuclear and surface receptors including FXR, transmembrane G-protein-coupled receptor 5 (TGR5), peroxisome proliferator-activated receptor (PPAR) and pregnane X receptor (PXR). Modulation of these receptors leads to altered bile composition, decreased cytotoxicity, decreased inflammation and improved metabolism. This review summarizes our current understanding of the role of bile acids in the pathophysiology of cholestatic liver diseases, presents the rationale for already approved medical therapies and discusses novel pharmacologic therapies under investigation.
Collapse
Affiliation(s)
- Jordan Goldstein
- Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cynthia Levy
- Division of Hepatology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Assis DN, Debray D. Gallbladder and bile duct disease in Cystic Fibrosis. J Cyst Fibros 2018; 16 Suppl 2:S62-S69. [PMID: 28986023 DOI: 10.1016/j.jcf.2017.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a multi-organ, clinically diverse disorder caused by mutations in the cystic fibrosis transmembrane conductance receptor (CFTR). Awareness of extra-pulmonary manifestations, including gastrointestinal and hepatobiliary disturbances, is an increasingly important part of providing high-quality care to patients with CF. Furthermore, biliary disorders, including gallbladder and bile duct disease, are common complications of CF. Therefore, a thorough understanding and efficient clinical evaluation of the gallbladder and biliary tree is an important aspect of integrated care for the patient with CF in order to prevent progression of undetected pathology. This best practice article summarizes the basis for gallbladder and bile duct pathology, describes the context and clinical presentation of biliary disease, and provides recommended approaches to delivery of high-quality care for patients with CF.
Collapse
Affiliation(s)
- David N Assis
- Section of Digestive Diseases and Yale Liver Center, Yale University School of Medicine, 333 Cedar St 1080 LMP, New Haven, CT 06510, USA.
| | - Dominique Debray
- Pediatric Hepatology Unit, APHP-Hôpital Necker and UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
19
|
Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? J Hepatol 2017; 67:619-631. [PMID: 28712691 DOI: 10.1016/j.jhep.2017.04.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
The main trigger for liver injury in acquired cholestatic liver disease remains unclear. However, the accumulation of bile acids (BAs) undoubtedly plays a role. Recent progress in deciphering the pathomechanisms of inborn cholestatic liver diseases, decoding mechanisms of BA-induced cell death, and generating modern BA-derived drugs has improved the understanding of the regulation of BA synthesis and transport. Now is the appropriate time to reassess current knowledge about the specific role of BAs in hepatobiliary injury.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria.
| | - Martin Wagner
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria
| |
Collapse
|
20
|
Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1319-1325. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Bile salts represent signalling molecules with a variety of endocrine functions. Bile salt effects are mediated by different receptor molecules, comprising ligand-activated nuclear transcription factors as well as G protein-coupled membrane-bound receptors. The farnesoid X receptor (FXR) and the plasma membrane-bound G protein-coupled receptor TGR5 (Gpbar-1) are prototypic bile salt receptors of both classes and are highly expressed in the liver including the biliary tree as well as in the intestine. In liver, TGR5 is localized in different non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells and small and large cholangiocytes. Through TGR5 bile salts can mediate choleretic, cell-protective as well as proliferative effects in cholangiocytes. A disturbance of these signalling mechanisms can contribute to the development of biliary diseases. In line with the important role of TGR5 for bile salt signalling, TGR5 knockout mice are more susceptible to cholestatic liver damage. Furthermore, in absence of TGR5 cholangiocyte proliferation in response to cholestasis is attenuated and intrahepatic and extrahepatic bile ducts show increased cell damage, underscoring the role of the receptor for biliary physiology. Decreased TGR5 expression may also contribute to the development or progression of cholangiopathies like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) since reduced TGR5-dependent cell-protective mechanisms such as bicarbonate secretion renders cholangiocytes more vulnerable towards bile salt toxicity. Nevertheless, TGR5 overexpression or constant stimulation of the receptor can promote cholangiocyte proliferation leading to cyst growth in polycystic liver disease or even progression of cholangiocarcinoma. Not only the stimulation of TGR5-mediated pathways by suitable TGR5 agonists but also the inhibition of TGR5 signalling by the use of antagonists represent potential therapeutic approaches for different types of biliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carola Dröge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Maroni L, Hohenester SD, van de Graaf SFJ, Tolenaars D, van Lienden K, Verheij J, Marzioni M, Karlsen TH, Oude Elferink RPJ, Beuers U. Knockout of the primary sclerosing cholangitis-risk gene Fut2 causes liver disease in mice. Hepatology 2017; 66:542-554. [PMID: 28056490 DOI: 10.1002/hep.29029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/14/2023]
Abstract
The etiopathogenesis of primary sclerosing cholangitis is unknown. Genetic variants of fucosyltransferase 2 (FUT2) have been identified in genome-wide association studies as risk factors for primary sclerosing cholangitis. We investigated the role of Fut2 in murine liver pathophysiology by studying Fut2-/- mice. Fut2-/- mice were viable and fertile, had lower body weight than wild-type (wt) littermates and gray fur. Half of the Fut2-/- mice showed serum bile salt levels 40 times higher than wt (Fut2-/-high ), whereas the remainder were normocholanemic (Fut2-/-low ). Fut2-/- mice showed normal serum liver tests, bile flow, biliary bile salt secretion, fecal bile salt loss, and expression of major hepatocellular bile salt transporters and cytochrome P450 7a1, the key regulator of bile salt synthesis, indicating that elevated serum bile salts in Fut2-/-high mice were not explained by cholestasis. Fut2-/-high mice, but not Fut2-/-low mice, were sensitive to hydrophobic bile salt feeding (0.3% glycochenodeoxycholate); they rapidly lost weight and showed elevation of serum liver tests (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase) and areas of liver parenchymal necrosis. Histomorphological evaluation revealed the presence of paraportal shunting vessels, increased numbers of portal vascular structures, wall thickening of some portal arteries, and periductal fibrosis in Fut2-/-high mice more than Fut2-/-low mice and not wt mice. Unconjugated bilirubin and ammonia were or tended to be elevated in Fut2-/-high mice only. Portosystemic shunting was demonstrated by portal angiography, which disclosed virtually complete portosystemic shunting in Fut2-/-high mice, discrete portosystemic shunting in Fut2-/-low mice, and no shunting in wt littermates. CONCLUSION Liver pathology in Fut2-/- mice is dominated by consequences of portosystemic shunting resulting in microcirculatory disturbances, mild (secondary) periductal fibrosis, and sensitivity toward human bile salt toxicity. (Hepatology 2017;66:542-554).
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Simon D Hohenester
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine II, University of Munich (LMU), Munich, Germany
| | - Stan F J van de Graaf
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Tolenaars
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Krijn van Lienden
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section for Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ronald P J Oude Elferink
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver. Mol Aspects Med 2017; 56:45-53. [PMID: 28606651 DOI: 10.1016/j.mam.2017.06.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury.
Collapse
Affiliation(s)
- Man Li
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shi-Ying Cai
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James L Boyer
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Lammert C, Vuppalanchi R. Future Therapies for Primary Sclerosing Cholangitis. PRIMARY SCLEROSING CHOLANGITIS 2017:153-166. [DOI: 10.1007/978-3-319-40908-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Hatano R, Kawaguchi K, Togashi F, Sugata M, Masuda S, Asano S. Ursodeoxycholic Acid Ameliorates Intrahepatic Cholestasis Independent of Biliary Bicarbonate Secretion in Vil2kd/kd Mice. Biol Pharm Bull 2017; 40:34-42. [DOI: 10.1248/bpb.b16-00529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryo Hatano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Fumitaka Togashi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Masato Sugata
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shizuka Masuda
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
25
|
Ma H, Zeng M, Han Y, Yan H, Tang H, Sheng J, Hu H, Cheng L, Xie Q, Zhu Y, Chen G, Gao Z, Xie W, Wang J, Wu S, Wang G, Miao X, Fu X, Duan L, Xu J, Wei L, Shi G, Chen C, Chen M, Ning Q, Yao C, Jia J. A multicenter, randomized, double-blind trial comparing the efficacy and safety of TUDCA and UDCA in Chinese patients with primary biliary cholangitis. Medicine (Baltimore) 2016; 95:e5391. [PMID: 27893675 PMCID: PMC5134868 DOI: 10.1097/md.0000000000005391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022] Open
Abstract
AIM Tauroursodeoxycholic acid (TUDCA) is a taurine conjugated form of ursodeoxycholic acid (UDCA) with higher hydrophility. To further evaluate the efficacy and safety of TUDCA for primary biliary cholangitis (PBC), we performed this study on Chinese patients. METHODS 199 PBC patients were randomly assigned to either 250 mg TUDCA plus UDCA placebo or 250 mg UDCA plus TUDCA placebo, 3 times per day for 24 weeks. The primary endpoint was defined as percentage of patients achieving serum alkaline phosphatase (ALP) reduction of more than 25% from baseline. RESULTS At week 24, 75.97% of patients in the TUDCA group and 80.88% of patients in the UDCA group achieved a serum ALP reduction of more than 25% from baseline (P = 0.453). The percentage of patients with serum ALP levels declined more than 40% following 24 weeks of treatment was 55.81% in the TUDCA group and 52.94% in the UDCA group (P = 0.699). Both groups showed similar improvement in serum levels of ALP, aspartate aminotransferase, and total bilirubin (P > 0.05). The proportion of patients with pruritus/scratch increased from 1.43% to 10.00% in UDCA group, while there's no change in TUDCA group (P = 0.023). Both drugs were well tolerated, with comparable adverse event rates between the 2 groups. CONCLUSIONS TUDCA is safe and as efficacious as UDCA for the treatment of PBC, and may be better to relieve symptoms than UDCA.
Collapse
Affiliation(s)
- Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing
| | - Minde Zeng
- Gastroenterology Department, Renji Hospital, Shanghai Jiao Tong University, Shanghai
| | - Ying Han
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi’an
| | - Huiping Yan
- Clinical Research Center for Autoimmune Liver Disease, Beijing You-an Hospital Capital Medical University, Beijing
| | - Hong Tang
- Department of Infectious Diseases, Huaxi Hospital, Chengdu
| | - Jifang Sheng
- Department of Infectious Diseases, Zhejiang University 1st Affiliated Hospital, Hangzhou
| | - Heping Hu
- Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai
| | - Liufang Cheng
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army General Hospital, Beijing
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai
| | - Youfu Zhu
- Hepatology Department, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Guofeng Chen
- Liver Fibrosis Noninvasive Diagnosis and Treatment Center, 302 Military Hospital, Beijing
| | - Zhiliang Gao
- Department of Infectious Diseases, Sun Yat-Sen University 3rd Affiliated Hospital, Guangzhou
| | - Wen Xie
- Liver Disease Center, Beijing Ditan Hospital, Capital Medial University, Beijing
| | - Jiyao Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University
| | | | - Guiqiang Wang
- Department of Infectious Disease, Peking University First Hospital, Beijing
| | - Xiaohui Miao
- Department of Infectious Diseases, Changzheng Hospital, Second Military Medical University, Shanghai
| | - Xiaoqing Fu
- Department of Infectious Diseases, Hangzhou Sixth People's Hospital, Hangzhou
| | - Liping Duan
- Department of Gastroenterology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Xu
- Department of Infectious Diseases, The Third People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Lai Wei
- Hepatology Unit, Peking University People's Hospital, Beijing
| | - Guangfeng Shi
- Department of Infectious Diseases, Shanghai Huashan Hospital
| | - Chengwei Chen
- Department of Infectious Diseases, 85th PLA Hospital, Shanghai
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Qin Ning
- Institute and Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Chen Yao
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing
| |
Collapse
|
26
|
Wagner M, Fickert P, Zollner G. Secretin and cholestasis, two sides of a coin. Hepatology 2016; 64:714-6. [PMID: 27312229 DOI: 10.1002/hep.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 12/07/2022]
Affiliation(s)
- Martin Wagner
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Zollner
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Abstract
Cholestatic liver diseases are hereditary or acquired disorders with impaired hepatic excretion and enterohepatic circulation of bile acids and other cholephiles. The distinct pathological mechanisms, particularly for the acquired forms of cholestasis, are not fully revealed, but advances in the understanding of the molecular mechanisms and identification of key regulatory mechanisms of the enterohepatic circulation of bile acids have unraveled common and central mechanisms, which can be pharmacologically targeted. This overview focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19, and apical sodium-dependent bile acid transporter for the enterohepatic circulation of bile acids and their potential as new drug targets for the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Martin Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Wien, Austria
| |
Collapse
|
28
|
Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol 2016; 48:218-25. [PMID: 25138774 DOI: 10.1007/s12016-014-8443-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease affecting the intrahepatic and extrahepatic biliary tree leading to bile duct strictures, progressive cholestasis, and development of liver fibrosis and cirrhosis. The pathogenesis of PSC is still elusive; however, both an immune-mediated injury of the bile ducts as well as increased recruitment of intestinal-primed T lymphocytes to the biliary tracts seem to contribute to disease development and progression. TGR5 (Gpbar-1) is a G-protein-coupled receptor responsive to bile acids, which is expressed in cholangiocytes, intestinal epithelial cells, and macrophages of the liver and intestine as well as in CD14-positive monocytes of the peripheral blood. Activation of TGR5 in biliary epithelial cells promotes chloride and bicarbonate secretion, triggers cell proliferation, and prevents apoptotic cell death. In immune cells, stimulation of TGR5 inhibits cytokine expression and secretion, thus reducing systemic as well as hepatic and intestinal inflammation. The expression pattern of TGR5 in the liver and intestine as well as the potential protective functions of TGR5 suggest a role for this receptor in the pathogenesis of PSC. While mutations in the coding region of the TGR5 gene are too rare to contribute to overall disease susceptibility, the expression and localization of the receptor have not been studied in PSC livers. Pharmacological activation of TGR5 in mice promotes protective mechanisms in biliary epithelial cells and reduces hepatic and systemic inflammation; however, it also provokes pruritus. Further studies are needed to predict the potential benefits as well as side effects of TGR5 agonist treatment in PSC patients.
Collapse
Affiliation(s)
- Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany,
| | | | | |
Collapse
|
29
|
Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015; 63:1220-8. [PMID: 26119688 DOI: 10.1016/j.jhep.2015.06.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/08/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterised by fibro-stenosing strictures involving extrahepatic and/or large intrahepatic bile ducts. Mechanisms leading to bile duct injury are poorly understood. We aimed to study the biliary tree stem cell compartment located in peribiliary glands of extrahepatic and large intrahepatic bile ducts and its role in the pathogenesis of biliary fibrosis in PSC. METHODS Specimens containing extrahepatic or large intrahepatic bile ducts were obtained from normal liver (n=6), liver explants from patients with PSC (n=11), and primary biliary cirrhosis (n=6). Specimens were processed for histology, immunohistochemistry and immunofluorescence. RESULTS In PSC samples, progressive hyperplasia and mucinous metaplasia of peribiliary glands were observed in large ducts with fibrosis, but not in inflamed ducts without fibrosis. Peribiliary gland hyperplasia was associated with progressive biliary fibrosis and the occurrence of dysplastic lesions. Hyperplasia of peribiliary glands was determined by the expansion of biliary tree stem cells, which sprouted towards the surface epithelium. In PSC, peribiliary glands and myofibroblasts displayed enhanced expression of Hedgehog pathway components. Peribiliary glands in ducts with onion skin-like fibrosis expressed epithelial-to-mesenchymal transition traits associated with components of Hedgehog pathway, markers of senescence and autophagy. CONCLUSIONS The biliary tree stem cell compartment is activated in PSC, its activation contributes to biliary fibrosis, and is sustained by the Hedgehog pathway. Our findings suggest a key role for peribiliary glands in the progression of bile duct lesions in PSC and could explain the associated high risk of cholangiocarcinoma.
Collapse
|
30
|
Woolbright BL, McGill MR, Yan H, Jaeschke H. Bile Acid-Induced Toxicity in HepaRG Cells Recapitulates the Response in Primary Human Hepatocytes. Basic Clin Pharmacol Toxicol 2015; 118:160-7. [PMID: 26176423 DOI: 10.1111/bcpt.12449] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022]
Abstract
Cholestatic liver injury is a pathological component of numerous disease states. Much of the current literature on cholestatic liver injury is derived from in vitro studies using rodent hepatocytes or cell lines transfected with bile acid (BA) uptake transporters. While these studies demonstrate BA-driven apoptosis, it is debatable whether these models reflect the human pathophysiology, as primary human hepatocytes undergo primarily necrosis. HepaRG cells are a bipotential, human hepatoma line that express apical and basolateral BA transporters. Thus, we sought to determine whether HepaRG cells could replicate the response of primary human hepatocytes to BA exposure in vitro. HepG2 cells, primary murine hepatocytes (PMH) or HepaRG cells, were exposed to taurocholic acid (TCA), or glycochenodeoxycholate (GCDC) and lactate dehydrogenase release were measured to determine cell death. Cell death occurred dose-responsively in HepaRG cells when exposed to GCDC; however, HepG2 cells died acutely only at very high concentrations of GCDC. In HepaRG cells, pre-treatment with the caspase inhibitor z-VD-FMK had no effect on cell death, indicating a lack of apoptotic cell death, and while c-jun N-terminal kinase (JNK) protein was activated by GCDC treatment in HepaRG cells, the inhibition of JNK did not protect. Although previous data indicate that TCA stimulates pro-inflammatory gene induction in PMH, there was no change in gene expression after TCA stimulation in HepaRG cells, which mimicked previous data found in primary human hepatocytes. These data provide evidence for HepaRG cells as a new model for the study of the effect of BA on human hepatocytes.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Huimin Yan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
31
|
Chen Y, Guldiken N, Spurny M, Mohammed HHA, Haybaeck J, Pollheimer MJ, Fickert P, Gassler N, Jeon MK, Trautwein C, Strnad P. Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. J Pathol 2015; 237:343-54. [PMID: 26108453 DOI: 10.1002/path.4580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
Keratins (K) are cytoprotective proteins and keratin mutations predispose to the development of multiple human diseases. K19 represents the most widely used marker of biliary and hepatic progenitor cells as well as a marker of ductular reaction that constitutes the basic regenerative response to chronic liver injury. In the present study, we investigated the role of K19 in biliary and hepatic progenitor cells and its importance for ductular reaction. K19 wild-type (WT) and knockout (KO) mice were fed: (a) 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC); (b) cholic acid (CA); (c) a choline-deficient, ethionine-supplemented (CDE) diet; or (d) were subjected to common bile duct ligation (CBDL). The bile composition, liver damage, bile duct proliferation, oval cell content and biliary fibrosis were analysed. In untreated animals, loss of K19 led to redistribution of the K network in biliary epithelial cells (BECs) but to no obvious biliary phenotype. After DDC feeding, K19 KO mice exhibited (compared to WTs): (a) increased cholestasis; (b) less pronounced ductular reaction with reduced ductular proliferation and fewer oval cells; (c) impaired Notch 2 signalling in BECs; (d) lower biliary fibrosis score and biliary bicarbonate concentration. An attenuated oval cell proliferation in K19 KOs was also found after feeding with the CDE diet. K19 KOs subjected to CBDL displayed lower BEC proliferation, oval cell content and less prominent Notch 2 signal. K19 deficiency did not change the extent of CA- or CBDL-induced liver injury and fibrosis. Our results demonstrate that K19 plays an important role in the ductular reaction and might be of importance in multiple chronic liver disorders that frequently display a ductular reaction.
Collapse
Affiliation(s)
- Yu Chen
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | - Nurdan Guldiken
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | - Manuela Spurny
- Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | | | | | - Marion J Pollheimer
- Institute of Pathology, Medical University Graz, Austria.,Department of Internal Medicine, Medical University Graz, Austria
| | - Peter Fickert
- Institute of Pathology, Medical University Graz, Austria.,Department of Internal Medicine, Medical University Graz, Austria
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, Germany
| | - Min Kyung Jeon
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, Germany
| | | | - Pavel Strnad
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| |
Collapse
|
32
|
Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: Rationale, current evidence and future directions. J Hepatol 2015; 63:265-75. [PMID: 25770660 DOI: 10.1016/j.jhep.2015.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs.
Collapse
Affiliation(s)
- Pepijn D Weeder
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne van Rijn
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Role of novel retroviruses in chronic liver disease: assessing the link of human betaretrovirus with primary biliary cirrhosis. Curr Infect Dis Rep 2015; 17:460. [PMID: 25754451 PMCID: PMC4353873 DOI: 10.1007/s11908-014-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A human betaretrovirus resembling mouse mammary tumor virus has been characterized in patients with primary biliary cirrhosis. The agent triggers a disease-specific phenotype in vitro with aberrant cell-surface expression of mitochondrial antigens. The presentation of a usually sequestered self-protein is thought to lead to the loss of tolerance and the production of anti-mitochondrial antibodies associated with the disease. Similar observations have been made in mouse models, where mouse mammary tumor virus infection has been linked with the development of cholangitis and production of anti-mitochondrial antibodies. The use of combination antiretroviral therapy has been shown to impact on histological and biochemical disease in mouse models of autoimmune biliary disease and in clinical trials of patients with primary biliary cirrhosis. However, the HIV protease inhibitors are not well tolerated in patients with primary biliary cirrhosis, and more efficacious regimens will be required to clearly link reduction of viral load with improvement of cholangitis.
Collapse
|
34
|
Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease--another black box in hepatology. Int J Mol Sci 2014; 15:13529-49. [PMID: 25093717 PMCID: PMC4159809 DOI: 10.3390/ijms150813529] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
Due to improved medical care, life expectancy in patients with cystic fibrosis (CF) has veritably improved over the last decades. Importantly, cystic fibrosis related liver disease (CFLD) has become one of the leading causes of morbidity and mortality in CF patients. However, CFLD might be largely underdiagnosed and diagnostic criteria need to be refined. The underlying pathomechanisms are largely unknown, and treatment strategies with proven efficacy are lacking. This review focuses on current invasive and non-invasive diagnostic standards, the current knowledge on the pathophysiology of CFLD, treatment strategies, and possible future developments.
Collapse
Affiliation(s)
- Katharina Staufer
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Lili Kazemi-Shirazi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
35
|
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
36
|
Trauner M, Halilbasic E, Kazemi-Shirazi L, Kienbacher C, Staufer K, Traussnigg S, Hofer H. Therapeutic role of bile acids and nuclear receptor agonists in fibrosing cholangiopathies. Dig Dis 2014; 32:631-6. [PMID: 25034298 DOI: 10.1159/000360517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammatory bile duct diseases such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) result in progressive fibrosis of the biliary tract and ultimately cirrhosis of the liver. Since the etiology and pathogenesis of these fibrosing cholangiopathies are still poorly understood, therapeutic options are rather limited at present. Ursodeoxycholic acid (UDCA) is the paradigm therapeutic bile acid and established standard treatment for PBC, but its role for medical therapy of PSC is still under debate. Promising novel bile acid-based therapeutic options include 24-norursodeoxycholic acid, a side chain-shortened C23 homologue of UDCA, and bile acid receptor/farnesoid X receptor agonists (e.g., obeticholic acid) which currently undergo clinical development for fibrosing cholangiopathies such as PBC and PSC. Other nuclear receptors such as vitamin D receptor and fatty acid-activated peroxisome proliferator-activated receptors are also of considerable interest. This review article is a summary of an overview talk given at Falk Symposium 191 on Advances in Pathogenesis and Treatment of Liver Diseases held in London, October 3-4, 2013, and summarizes the recent progress with novel therapeutic bile acids and bile acid derivatives as novel therapies for fibrosing cholangiopathies such as PBC and PSC.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 2013; 13:900-8. [PMID: 24280619 DOI: 10.1016/j.coph.2013.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023]
Abstract
The concept of a protective alkaline gastric and duodenal mucus layer is a century old, yet it is amazing how much new information on HCO3(-) transport pathways has emerged recently, made possible by the extensive utilization of gene-deleted and transgenic mice and novel techniques to study HCO3(-) transport. This review highlights recent findings regarding the importance of HCO3(-) for mucosal protection of duodenum and other gastrointestinal epithelia against luminal acid and other damaging factors. Recently, methods have been developed to visualize HCO3(-) transport in vivo by assessing the surface pH in the mucus layer, as well as the epithelial pH. New information about HCO3(-) transport pathways, and emerging concepts about the intricate regulatory network that governs duodenal HCO3(-) secretion are described, and new perspectives for drug therapy discussed.
Collapse
|
38
|
Abstract
Cholestasis develops as a consequence of impaired bile formation and/or bile flow and can be classified as intra- or extrahepatic. Chronic cholestatic diseases are mostly intrahepatic with the exception of primary and secondary sclerosing cholangitis affecting intra- and extrahepatic bile ducts. Recent genome-wide association studies have confirmed major histocompatibility complex associations and discovered multiple susceptibility loci in primary biliary cirrhosis and primary sclerosing cholangitis, providing new insights into disease pathogenesis, which may translate into more precise therapeutic prevention and intervention in the future. Diagnostic steps in cholestatic conditions comprise a thorough patient history, abdominal imaging and distinct serological studies including antimitochondrial antibodies and IgG4 levels; if the diagnosis remains unclear, liver biopsy is warranted. Genetic testing should also be considered, as mutations in the hepatobiliary transporters ATP8B1, ABCB11 and ABCB4 are causative for three different forms of familial intrahepatic cholestasis. Disease severity is dependent on the genotypic variants of these transporters, ranging from mildly elevated liver enzymes in adults to cirrhosis in early childhood. Ligands of nuclear receptors, which represent important regulators of hepatobiliary transporters, and modified bile salts are new promising therapeutic options in cholestatic liver disease and are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph Jüngst
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | | |
Collapse
|
39
|
Wang T, Zhao L, Yang Y, Tian H, Suo WH, Yan M, Fu GH. EGR1 is critical for gastrin-dependent upregulation of anion exchanger 2 in gastric cancer cells. FEBS J 2012; 280:174-83. [PMID: 23121767 DOI: 10.1111/febs.12058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/27/2012] [Accepted: 11/02/2012] [Indexed: 01/28/2023]
Abstract
The essential anion exchanger (AE) involved in bicarbonate secretion is AE2/SLC4A2, a membrane protein recognized to be relevant for the regulation of the intracellular pH in several cell types. Here we report that gastrin, a major gastrointestinal hormone, upregulates the expression of AE2 mRNA and protein in a cholecystokinin B receptor dependent manner in gastric cancer cells. The upregulated species of AE2 mRNA originates from the classical upstream promoter of the AE2 gene (here referred to as AE2a1) which provides the binding site for transcription factors early growth response 1 (EGR1) and SP1. EGR1 upregulated the AE2 expression that can be competitively inhibited by SP1 in co-transfection experiments. This competitive inhibition was avoided in cells because the SP1 expression was time-staggered to EGR1 in response to gastrin. Overexpression or knockdown of EGR1 consistently increased or decreased the expression of AE2. Our data linked a novel signal pathway involved in gastrin-stimulated AE2 expression.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|