1
|
Wittner L, Wagener L, Wiese JJ, Stolzer I, Krug SM, Naschberger E, Jackstadt R, Beyaert R, Atreya R, Kühl AA, Sturm G, Gonzalez-Acera M, Patankar JV, Becker C, Siegmund B, Trajanoski Z, Winner B, Neurath MF, Schumann M, Günther C. Proteolytic Activity of the Paracaspase MALT1 Is Involved in Epithelial Restitution and Mucosal Healing. Int J Mol Sci 2023; 24:ijms24087402. [PMID: 37108564 PMCID: PMC10138456 DOI: 10.3390/ijms24087402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The paracaspase MALT1 is a crucial regulator of immune responses in various cellular contexts. Recently, there is increasing evidence suggesting that MALT1 might represent a novel key player in mucosal inflammation. However, the molecular mechanisms underlying this process and the targeted cell population remain unclear. In this study, we investigate the role of MALT1 proteolytic activity in the context of mucosal inflammation. We demonstrate a significant enrichment of MALT1 gene and protein expression in colonic epithelial cells of UC patients, as well as in the context of experimental colitis. Mechanistically we demonstrate that MALT1 protease function inhibits ferroptosis, a form of iron-dependent cell death, upstream of NF-κB signaling, which can promote inflammation and tissue damage in IBD. We further show that MALT1 activity contributes to STAT3 signaling, which is essential for the regeneration of the intestinal epithelium after injury. In summary, our data strongly suggests that the protease function of MALT1 plays a critical role in the regulation of immune and inflammatory responses, as well as mucosal healing. Understanding the mechanisms by which MALT1 protease function regulates these processes may offer novel therapeutic targets for the treatment of IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Leonie Wittner
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Wagener
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jakob J Wiese
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Elisabeth Naschberger
- Division Molecular and Experimental Surgery, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rene Jackstadt
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Anja A Kühl
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
- iPATH.Berlin-Core Unit, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Zlatko Trajanoski
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Beate Winner
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center of Rare Diseases (ZSEER), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- IBDome Consortium, 91054 Erlangen, Germany
- IBDome Consortium, 12203 Berlin, Germany
| |
Collapse
|
2
|
Izumi K, Nishikori M, Yuan H, Otsuka Y, Nakao K, Takaori-Kondo A. Establishment and characterization of a MALT lymphoma cell line carrying an API2-MALT1 translocation. Genes Chromosomes Cancer 2020; 59:517-524. [PMID: 32348592 DOI: 10.1002/gcc.22855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/07/2022] Open
Abstract
MALT lymphomas with API2(BIRC3)-MALT1 translocation usually have an indolent clinical course and rarely transform into aggressive lymphoma, and there have been no lymphoma cell lines carrying API2-MALT1 translocation reported to date. We established a novel lymphoma cell line named BMA19, carrying the API2-MALT1 translocation from a patient with histologic transformation of intestinal MALT lymphoma. The cells were suggested to carry API2-MALT1 and MYC-IGH translocations by chromosomal analysis, and these translocations were confirmed by polymerase chain reaction analysis. The expression of MYC was shown to be enhanced as a result of the MYC-IGH translocation, and it is considered to have played a role in the histologic transformation of MALT lymphoma. Whole exome sequencing of BMA19 identified several nucleotide variations in genes reported to be mutated in previous studies of marginal zone lymphomas. The MALT1 inhibitor MI-2 specifically decreased cell growth, and the BMA19 cell line was suggested to be still dependent on the API2-MALT1 signal. Subtractive microarray analysis showed that one of the earliest events resulting from MALT1 inhibition is increased susceptibility to endoplasmic reticulum stress-induced apoptosis. The BMA19 cell line is considered to conserve the biological properties of MALT lymphoma and is expected to be a valuable tool for research into the pathogenesis of MALT lymphoma with an API2-MALT1 translocation.
Collapse
Affiliation(s)
- Kiyotaka Izumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hepei Yuan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Otsuka
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Nakao
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: new routes to targeted therapies. Mod Pathol 2016; 29:685-97. [PMID: 27102345 PMCID: PMC4925176 DOI: 10.1038/modpathol.2016.79] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing (NGS) profiling of 38 formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically relevant genes. Potentially actionable mutations and copy number alterations were prioritized based on gain- and loss-of-function analyses, and catalogued, approved, and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0-5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically relevant hotspot gain-of-function mutations identified in 71% of diffuse large B-cell lymphomas and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (diffuse large B-cell and marginal zone lymphoma), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma), and NF1 (diffuse large B-cell lymphoma), and gain-of-function mutations in the oncogenes HRAS (follicular lymphoma) and NRAS (diffuse large B-cell lymphoma) were also observed. Together, our study demonstrates that NGS can be used to profile routine formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas for identification of somatic-driving alterations and nomination of potential therapeutic strategies.
Collapse
|
6
|
Yang W, Li Y, Li P, Wang L. PMA/IONO affects diffuse large B-cell lymphoma cell growth through upregulation of A20 expression. Oncol Rep 2016; 36:1069-75. [PMID: 27349720 DOI: 10.3892/or.2016.4899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common non-Hodgkin lymphoma. A20 and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) are known to be related to DLBCL pathogenesis and progression. This study aimed to assess the effects of phorbol myristate acetate/ionomycin (PMA/IONO) on the growth and apoptosis of the DLBCL cell line OCI-LY1, and their associations with A20, MALT1 and survivin levels. Cell viability was assessed by MTT assay. Cell cycle distribution and apoptosis were evaluated using flow cytometry after incubation with Annexin V-FITC/propidium iodide (PI) and RNase/PI, respectively. Gene and protein expression levels were determined by quantitative real-time PCR and western blotting, respectively. To further determine the role of A20, this gene was silenced in the OCI-LY1 cell line by specific siRNA transfection. A20 protein levels were higher in the OCI-LY1 cells treated with PMA/IONO compared with the controls, and were positively correlated with the concentration and treatment time of IONO, but not with changes of PMA and MALT1. Meanwhile, survivin expression was reduced in the OCI-LY1 cells after PMA/IONO treatment. In addition, OCI-LY1 proliferation was markedly inhibited, with a negative correlation between cell viability and IONO concentration. In concordance, apoptosis rates were higher in the OCI-LY1 cells after PMA + IONO treatment. Cell cycle distribution differed between the OCI-LY1 cells with and without PMA/IONO treatment only at 24 h, with increased cells in the G0/G1 stage after PMA/IONO treatment. These findings indicate that PMA/IONO promotes the apoptosis and inhibits the growth of DLBCL cells, in association with A20 upregulation. Thus, A20 may be a potential therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Wenxiu Yang
- Department of Pathology, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Yi Li
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Pinhao Li
- Department of Pathology, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Lingling Wang
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
7
|
Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. Nat Commun 2016; 7:11889. [PMID: 27297662 PMCID: PMC4911677 DOI: 10.1038/ncomms11889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. The homeobox NKX2 family of transcriptional factors has been shown to regulate fundamental developmental processes. Here, the authors show that NKX2-3 is a bona fide oncogenic driver in marginal-zone B-cell lymphoma and that it promotes lymphomagenesis by shaping lymphocyte dynamics and promoting BCR signalling.
Collapse
|
8
|
Bogusz AM, Bagg A. Genetic aberrations in small B-cell lymphomas and leukemias: molecular pathology, clinical relevance and therapeutic targets. Leuk Lymphoma 2016; 57:1991-2013. [PMID: 27121112 DOI: 10.3109/10428194.2016.1173212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small B-cell lymphomas and leukemias (SBCLs) are a clinically, morphologically, immunophenotypically and genetically heterogeneous group of clonal lymphoid neoplasms, including entities such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), lymphoplasmacytic lymphoma (LPL), marginal zone lymphoma (MZL) and hairy cell leukemia (HCL). The pathogenesis of some of these lymphoid malignancies is characterized by distinct translocations, for example t(11;14) in the majority of cases of MCL and t(14;18) in most cases of FL, whereas other entities are associated with a variety of recurrent but nonspecific numeric chromosomal abnormalities, as exemplified by del(13q14), del(11q22), and +12 in CLL, and yet others such as LPL and HCL that lack recurrent or specific cytogenetic aberrations. The recent surge in next generation sequencing (NGS) technology has shed more light on the genetic landscape of SBCLs through characterization of numerous driver mutations including SF3B1 and NOTCH1 in CLL, ATM and CCND1 in MCL, KMT2D and EPHA7 in FL, MYD88 (L265P) in LPL, KLF2 and NOTCH2 in splenic MZL (SMZL) and BRAF (V600E) in HCL. The identification of distinct genetic lesions not only provides greater insight into the molecular pathogenesis of these disorders but also identifies potential valuable biomarkers for prognostic stratification, as well as specific targets for directed therapy. This review discusses the well-established and recently identified molecular lesions underlying the pathogenesis of SBCLs, highlights their clinical relevance and summarizes novel targeted therapies.
Collapse
Affiliation(s)
- Agata M Bogusz
- a Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Adam Bagg
- a Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
9
|
Yuan Y, Gao M. Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Sci Rep 2015; 5:10259. [PMID: 25989507 PMCID: PMC4437294 DOI: 10.1038/srep10259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Bacillus pumilus has been widely identified as a pathogen of plant and human, while the genetic information is rarely available for pathogenic B. pumilus strains. B. pumilus GR8 is a pathogen that causes ginger rhizome rot disease by invading ginger rhizome parenchymatous tissues, growing in the extracellular space, and producing plant cell wall-degrading enzymes to destroy ginger cells. In this study, the genome of GR8 was sequenced and characterized. This genome was the third completely sequenced genome of the B. pumilus species, and it exhibited high similarity to the genome of the B. pumilus strain B6033. The genome of GR8 was 3.67 Mb in length and encoded 3,713 putative ORFs. Among these predicted proteins, numerous plant cell wall-degrading enzymes and several proteins associated with invading and adapting to the environment in the extracellular space of the ginger rhizome parenchymatous tissue were found. The GR8 genome contained only one restriction-modification system and no CRISPR/Cas system. The lack of phage-resistant system suggested that phages might be potential agents for the control of GR8. The genomic analysis of GR8 provided the understanding to the pathogenesis and the phage-control strategy of pathogenic B. pumilus strains.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|