1
|
Zhang H, Guo R, Li Z, Ma R, Xu S, Yin L, Zhu H, Huang Z, Xing C, Yang Y, Pu Y, Cheng Z, Liu J, Peng H, Sheng Y. MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells. Leukemia 2025; 39:265-270. [PMID: 39438589 DOI: 10.1038/s41375-024-02447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Ruixue Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zhenfen Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Shina Xu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yunlong Yang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yulin Pu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
2
|
Li Z, Fierstein S, Tanaka-Yano M, Frenis K, Chen CC, Wang D, Falchetti M, Côté P, Curran C, Lu K, Liu T, Orkin S, Li H, Lummertz da Rocha E, Hu S, Zhu Q, Rowe RG. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 2025; 39:87-97. [PMID: 39354203 DOI: 10.1038/s41375-024-02428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
Collapse
Affiliation(s)
- Zhiheng Li
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sara Fierstein
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Mayuri Tanaka-Yano
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Parker Côté
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curran
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kate Lu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Stuart Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hojun Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qian Zhu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | - R Grant Rowe
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sato H, Meng S, Sasaki K, Kobayashi S, Kido K, Tsuji Y, Arao Y, Saito Y, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Takahashi H, Motooka D, Uchida S, Ofusa K, Satoh T, Doki Y, Eguchi H, Hara T, Ishii H. Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality. Int J Oncol 2024; 65:74. [PMID: 38847231 PMCID: PMC11173368 DOI: 10.3892/ijo.2024.5662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence‑free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid‑deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C‑terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C‑terminal deletions, suggesting the role of the N‑terminal regions. Given that SRP9 is an RNA‑binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear‑translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Pathology, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka 559-8519, Japan
| | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Hwang WC, Park K, Park S, Cheon NY, Lee JY, Hwang T, Lee S, Lee JM, Ju MK, Lee JR, Kwon YR, Jo WL, Kim M, Kim YJ, Kim H. Impaired binding affinity of YTHDC1 with METTL3/METTL14 results in R-loop accumulation in myelodysplastic neoplasms with DDX41 mutation. Leukemia 2024; 38:1353-1364. [PMID: 38514771 PMCID: PMC11147762 DOI: 10.1038/s41375-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
DEAD box helicase 41 (DDX41) mutations are the most prevalent predisposition to familial myelodysplastic syndrome (MDS). However, the precise roles of these variants in the pathogenesis of MDS have yet to be elucidated. Here, we discovered a novel mechanism by which DDX41 contributes to R-loop-induced DNA damage responses (DDR) in cooperation with the m6A-METTL complex (MAC) and YTHDC1 using DDX41 knockout (KO) and DDX41 knock-in (KI, R525H, Y259C) cell lines as well as primary samples from MDS patients. Compared to wild type (WT), DDX41 KO and KI led to increased levels of m6A RNA methylated R-loop. Interestingly, we found that DDX41 regulates m6A/R-loop levels by interacting with MAC components. Further, DDX41 promoted the recruitment of YTHDC1 to R-loops by promoting the binding between METTL3 and YTHDC1, which was dysregulated in DDX41-deficient cells, contributing to genomic instability. Collectively, we demonstrated that DDX41 plays a key role in the physiological control of R-loops in cooperation with MAC and YTHDC1. These findings provide novel insights into how defects in DDX41 influence MDS pathogenesis and suggest potential therapeutic targets for the treatment of MDS.
Collapse
Affiliation(s)
- Won Chan Hwang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kibeom Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Young Cheon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Ju
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Joo Rak Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Yong-Rim Kwon
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Lam Jo
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
5
|
Zhang M, Hyle J, Chen X, Xin Y, Jin Y, Zhang J, Yang X, Chen X, Wright S, Liu Z, Rosikiewicz W, Xu B, He L, Liu H, Ping N, Wu D, Wen F, Li C, Xu P. RNA-binding protein RBM5 plays an essential role in acute myeloid leukemia by activating the oncogenic protein HOXA9. Genome Biol 2024; 25:16. [PMID: 38216972 PMCID: PMC10785552 DOI: 10.1186/s13059-023-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaowen Chen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Ye Xin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yingcai Jin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xue Yang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinfeng Chen
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhenling Liu
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Liusheng He
- Core Facility of Flow Cytometry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Ping
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Jia W, Guo X, Wei Y, Liu J, Can C, Wang R, Yang X, Ji C, Ma D. Clinical and prognostic profile of SRSF2 and related spliceosome mutations in patients with acute myeloid leukemia. Mol Biol Rep 2023; 50:6601-6610. [PMID: 37344641 DOI: 10.1007/s11033-023-08597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but their clinical and prognostic relevance in acute myeloid leukemia (AML) have rarely been reported. METHODS A total of 368 newly diagnosed non-M3 AML patients were included in this study. Next generation sequencing including four SF genes was performed on the genomicDNA. The clinical features and survival were analyzed using statistical analysis. RESULTS We found that 64 of 368 patients harbored SF mutations. The SF mutations were much more frequently found in older or male patients. SRSF2 mutations were shown obviously co-existed with IDH2 mutation. The level of measurable residual disease after first chemotherapy was higher in SF-mutated patients compared to that in SF-wild patients, while the complete remission rate was significantly decreased. And the overall survival of SF-mutated patients was shorter than that of SF-wild patients. Moreover, our multivariable analysis suggests that the index of male, Kit mutation or ZRSR2 mutation was the independent risk factor for overall survival. SRSF2mut was associated with older age, higher proportion of peripheral blasts or abnormal cell proportion by flow cytometry. CONCLUSION SF mutation is a distinct subgroup of AML frequently associated with clinic-biological features and poor outcome. SRSF2mut could be potential targets for novel treatment in AML.
Collapse
Affiliation(s)
- Wenbo Jia
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, People's Republic of China.
| |
Collapse
|
7
|
Potts KS, Cameron RC, Metidji A, Ghazale N, Wallace L, Leal-Cervantes AI, Palumbo R, Barajas JM, Gupta V, Aluri S, Pradhan K, Myers JA, McKinstry M, Bai X, Choudhary GS, Shastri A, Verma A, Obeng EA, Bowman TV. Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition. Cell Rep 2022; 41:111825. [PMID: 36516770 PMCID: PMC9994853 DOI: 10.1016/j.celrep.2022.111825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/01/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amina Metidji
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Noura Ghazale
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - LaShanale Wallace
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Ana I Leal-Cervantes
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Reid Palumbo
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Juan Martin Barajas
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Srinivas Aluri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jacquelyn A Myers
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Mia McKinstry
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoying Bai
- Department of Obstetrics and Gynecology, University of Texas, Dallas, TX, USA
| | - Gaurav S Choudhary
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Aditi Shastri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA.
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|