1
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
2
|
Hao J, Zhou H, Nemes K, Yen D, Zhao W, Bramlett C, Wang B, Lu R, Shen K. Membrane-bound SCF and VCAM-1 synergistically regulate the morphology of hematopoietic stem cells. J Cell Biol 2021; 220:212562. [PMID: 34402812 PMCID: PMC8374872 DOI: 10.1083/jcb.202010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound factors expressed by niche stromal cells constitute a unique class of localized cues and regulate the long-term functions of adult stem cells, yet little is known about the underlying mechanisms. Here, we used a supported lipid bilayer (SLB) to recapitulate the membrane-bound interactions between hematopoietic stem cells (HSCs) and niche stromal cells. HSCs cluster membrane-bound stem cell factor (mSCF) at the HSC-SLB interface. They further form a polarized morphology with aggregated mSCF under a large protrusion through a synergy with VCAM-1 on the bilayer, which drastically enhances HSC adhesion. These features are unique to mSCF and HSCs among the factors and hematopoietic populations we examined. The mSCF-VCAM-1 synergy and the polarized HSC morphology require PI3K signaling and cytoskeletal reorganization. The synergy also enhances nuclear retention of FOXO3a, a crucial factor for HSC maintenance, and minimizes its loss induced by soluble SCF. Our work thus reveals a unique role and signaling mechanism of membrane-bound factors in regulating stem cell morphology and function.
Collapse
Affiliation(s)
- Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Kristen Nemes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Winfield Zhao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,Department of Medicine, University of Southern California, Los Angeles, CA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,USC Stem Cell, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Zarrabi M, Afzal E, Asghari MH, Ebrahimi M. Combination of SB431542, Chir9901, and Bpv as a novel supplement in the culture of umbilical cord blood hematopoietic stem cells. Stem Cell Res Ther 2020; 11:474. [PMID: 33168035 PMCID: PMC7650159 DOI: 10.1186/s13287-020-01945-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/20/2020] [Indexed: 01/11/2023] Open
Abstract
Background Small molecule compounds have been well recognized for their promising power in the generation, expansion, and maintenance of embryonic or adult stem cells. The aim of this study was to identify a novel combination of small molecules in order to optimize the ex vivo expansion of umbilical cord blood-derived CD34+ cells. Methods Considering the most important signaling pathways involved in the self-renewal of hematopoietic stem cells, CB-CD34+ cells were expanded with cytokines in the presence of seven small molecules including SB, PD, Chir, Bpv, Pur, Pμ, and NAM. The eliminativism approach was used to find the best combination of selected small molecules for effective ex vivo expansion of CD34+ cell. In each step, proliferation, self-renewal, and clonogenic potential of the expanded cells as well as expression of some hematopoietic stem cell-related genes were studied. Finally, the engraftment potential of expanded cells was also examined by the mouse intra-uterine transplantation model. Results Our data shows that the simultaneous use of SB431542 (TGF-β inhibitor), Chir9901 (GSK3 inhibitor), and Bpv (PTEN inhibitor) resulted in a 50-fold increase in the number of CD34+CD38− cells. This was further reflected in approximately 3 times the increase in the clonogenic potential of the small molecule cocktail-expanded cells. These cells, also, showed a 1.5-fold higher engraftment potential in the peripheral blood of the NMRI model of in utero transplantation. These results are in total conformity with the upregulation of HOXB4, GATA2, and CD34 marker gene as well as the CXCR4 homing gene. Conclusion Taken together, our findings introduce a novel combination of small molecules to improve the yield of existing protocols used in the expansion of hematopoietic stem cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.,Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Hassan Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.
| |
Collapse
|
4
|
β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. J Hypertens 2020; 38:82-94. [DOI: 10.1097/hjh.0000000000002203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zhang W, Yang J, Zhu Y, Sun X, Guo W, Liu X, Jing X, Guo G, Guo Q, Peng J, Zhu X. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Cell Tissue Bank 2019; 20:351-365. [PMID: 31218457 DOI: 10.1007/s10561-019-09774-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a dynamic and intricate three-dimensional (3D) microenvironment with excellent biophysical, biomechanical, and biochemical properties that may directly or indirectly regulate cell behavior, including proliferation, adhesion, migration, and differentiation. Compared with tissue-derived ECM, cell-derived ECM potentially has more advantages, including less potential for pathogen transfer, fewer inflammatory or anti-host immune responses, and a closer resemblance to the native ECM microenvironment. Different types of cell-derived ECM, such as adipose stem cells, synovium-derived stem cells and bone marrow stromal cells, their effects on articular chondrocytes which have been researched. In this study, we aimed to develop a 3D cell culture substrate using decellularized ECM derived from human umbilical cord-derived mesenchymal stem cells (hUCMSCs), and evaluated the effects on articular chondrocytes. We evaluated the morphology and components of hUCMSC-derived ECM using physical and chemical methods. Morphological, histological, immunohistochemical, biochemical, and real-time PCR analyses demonstrated that proliferation and differentiation capacity of chondrocytes using the 3D hUCMSC-derived ECM culture substrate was superior to that using non-coated two-dimensional plastic culture plates. In conclusion, 3D decellularized ECM derived from hUCMSCs offers a tissue-specific microenvironment for in vitro culture of chondrocytes, which not only markedly promoted chondrocyte proliferation but also preserved the differentiation capacity of chondrocytes. Therefore, our findings suggest that a 3D cell-derived ECM microenvironment represents a promising prospect for autologous chondrocyte-based cartilage tissue engineering and regeneration. The hUCMSC-derived ECM as a biomaterial is used for the preparation of scaffold or hybrid scaffold products which need to further study in the future.
Collapse
Affiliation(s)
- Weixiang Zhang
- The People's Hospital of Lanxi, 1359th Shanxi Road, Lanxi, 321100, China.,Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Jianhua Yang
- School of Medicine, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China
| | - Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, 999777, Hong Kong
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China.,School of Medicine, Nankai University, 94th Weijin Road, Nankai District, Tianjin, 300071, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Xuejian Liu
- School of Medicine, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China.,Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China.,Zhengzhou Yihe Hospital Affiliated to Henan University, 69th Nongyedong Road, Zhengzhou, 450000, China
| | - Xiaoguang Jing
- School of Medicine, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China.,Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Ganggang Guo
- School of Medicine, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China.,Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, 100853, China
| | - Xiaofeng Zhu
- School of Medicine, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China. .,Medical Research Center of Mudanjiang Medical School, 3th Tongxiang Road, Aimin District, Mudanjiang, 157011, China. .,Institute of Neurosciences, Jiamusi University, 148th Xuefu Road, Xiangyang District, Jiamusi, 154007, China.
| |
Collapse
|
6
|
Rao TN, Gupta MK, Softic S, Wang LD, Jang YC, Thomou T, Bezy O, Kulkarni RN, Kahn CR, Wagers AJ. Attenuation of PKCδ enhances metabolic activity and promotes expansion of blood progenitors. EMBO J 2018; 37:embj.2018100409. [PMID: 30446598 PMCID: PMC6293338 DOI: 10.15252/embj.2018100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
A finely tuned balance of self‐renewal, differentiation, proliferation, and survival governs the pool size and regenerative capacity of blood‐forming hematopoietic stem and progenitor cells (HSPCs). Here, we report that protein kinase C delta (PKCδ) is a critical regulator of adult HSPC number and function that couples the proliferative and metabolic activities of HSPCs. PKCδ‐deficient mice showed a pronounced increase in HSPC numbers, increased competence in reconstituting lethally irradiated recipients, enhanced long‐term competitive advantage in serial transplantation studies, and an augmented HSPC recovery during stress. PKCδ‐deficient HSPCs also showed accelerated proliferation and reduced apoptosis, but did not exhaust in serial transplant assays or induce leukemia. Using inducible knockout and transplantation models, we further found that PKCδ acts in a hematopoietic cell‐intrinsic manner to restrict HSPC number and bone marrow regenerative function. Mechanistically, PKCδ regulates HSPC energy metabolism and coordinately governs multiple regulators within signaling pathways implicated in HSPC homeostasis. Together, these data identify PKCδ as a critical regulator of HSPC signaling and metabolism that acts to limit HSPC expansion in response to physiological and regenerative demands.
Collapse
Affiliation(s)
- Tata Nageswara Rao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA .,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Manoj K Gupta
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Leo D Wang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.,Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Dana-Farber/Boston Children's Center for Cancer and Blood Disorders, Boston, MA, USA
| | - Young C Jang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Thomas Thomou
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA .,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
7
|
Wang J, Chen X, Guo B, Yang X, Zhou Y, Zhu X, Zhang K, Fan Y, Tu C, Zhang X. A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. J Mater Chem B 2018; 6:7383-7395. [PMID: 32254739 DOI: 10.1039/c8tb02283f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein adsorption plays a key role in bone repair and regeneration by affecting cell behavior. In this study, a biphasic calcium phosphate (BCP) ceramic, with excellent osteoinductivity, was chosen to investigate its serum protein adsorption profile using isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology. 281 differentially adsorbed serum proteins and the involved biological processes were confirmed by the combination of Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The differentially adsorbed adhesive proteins in the extracellular matrix (ECM)-receptor interaction pathway were further selected to investigate their roles in the behavior of mesenchymal stem cells (MSCs). Pre-coating and blockage experiments revealed that both adsorbed vitronectin (VN) and laminin (LN) could promote the attachment, proliferation and osteogenic differentiation of MSCs on the BCP ceramic by interacting with different integrin subunits. It is revealed that the up-regulated expressions of integrin α2, αv and β3, β5 could contribute to VN-mediated MSC functions, and the elevated gene expressions of α6 and β1, β4 could be related to the LN-participated process. The above results proved that the preferential protein adsorption on a biomaterial should be vital for modulating MSC functions in the course of material-mediated osteoinductivity.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shen CY, Chen LH, Lin YF, Lai LC, Chuang EY, Tsai MH. Mitomycin C treatment induces resistance and enhanced migration via phosphorylated Akt in aggressive lung cancer cells. Oncotarget 2018; 7:79995-80007. [PMID: 27833080 PMCID: PMC5346766 DOI: 10.18632/oncotarget.13237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023] Open
Abstract
Since 1984, mitomycin C (MMC) has been applied in the treatment of non-small-cell lung cancer (NSCLC). MMC-based chemotherapeutic regimens are still under consideration owing to the efficacy and low cost as compared with other second-line regimens in patients with advanced NSCLC. Hence, it is important to investigate whether MMC induces potential negative effects in NSCLC. Here, we found that the malignant lung cancer cells, CL1-2 and CL1-5, were more resistant to MMC than were the parental CL1-0 cells and pre-malignant CL1-1 cells. CL1-2 and CL1-5 cells consistently showed lower sub-G1 fractions post MMC treatment. DNA repair-related proteins were not induced more in CL1-5 than in CL1-0 cells, but the levels of endogenous and MMC-induced phosphorylated Akt (p-Akt) were higher in CL1-5 cells. Administering a p-Akt inhibitor reduced the MMC resistance, demonstrating that p-Akt is important in the MMC resistance of CL1-5 cells. Furthermore, we revealed that cell migration was enhanced by MMC but lowered by a p-Akt inhibitor in CL1-5 cells. This study suggests that in CL1-5 cells, the activity of p-Akt, rather than DNA repair mechanisms, may underlie the resistance to MMC and enhance the cells' migration abilities after MMC treatment.
Collapse
Affiliation(s)
- Cheng-Ying Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Han Chen
- YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Lin
- YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Abdal Dayem A, Lee S, Y. Choi H, Cho SG. The Impact of Adhesion Molecules on the In Vitro Culture and Differentiation of Stem Cells. Biotechnol J 2018; 13:1700575. [DOI: 10.1002/biot.201700575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Soobin Lee
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Hye Y. Choi
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| |
Collapse
|
10
|
Robb KP, Shridhar A, Flynn LE. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater Sci Eng 2017; 4:3627-3643. [PMID: 33429606 DOI: 10.1021/acsbiomaterials.7b00619] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue-specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM-derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kevin P Robb
- Biomedical Engineering Graduate Program, The University of Western Ontario, Claudette MacKay Lassonde Pavilion, London, Ontario, Canada N6A 5B9
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9
| | - Lauren E Flynn
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
11
|
Yu H, Shen Y, Jin J, Zhang Y, Feng T, Liu X. Fluid shear stress regulates HepG2 cell migration though time-dependent integrin signaling cascade. Cell Adh Migr 2017. [PMID: 28636424 DOI: 10.1080/19336918.2017.1319042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a subtype of malignant liver cancer with poor prognosis and limited treatment options. It is noteworthy that mechanical forces in tumor microenvironment play a pivotal role in mediating the behaviors and functions of tumor cells. As an instrumental type of mechanical forces in vivo, fluid shear stress (FSS) has been reported having potent physiologic and pathologic effects on cancer progression. However, the time-dependent mechanochemical transduction in HCC induced by FSS remains unclear. In this study, hepatocellular carcinoma HepG2 cells were exposed to 1.4 dyn/cm2 FSS for transient duration (15s and 30s), short duration (5 min, 15 min and 30 min) and long duration (1h, 2h and 4h), respectively. The expression and translocation of Integrins induced FAK-Rho GTPases signaling events were examined. Our results showed that FSS endowed HepG2 cells with higher migration ability via reorganizing cellular F-actin and disrupting intercellular tight junctions. We further demonstrated that FSS regulated the expression and translocation of Integrins and their downstream signaling cascade in time-dependent patterns. The FSS downregulated focal adhesion components (Paxillin, Vinculin and Talin) while upregulated the expression of Rho GTPases (Cdc42, Rac1 and RhoA) in long durations. These results indicated that FSS enhanced tumor cell migration through Integrins-FAK-Rho GTPases signaling pathway in time-dependent manners. Our in vitro findings shed new light on the role of FSS acting in physiologic and pathological processes during tumor progression, which has emerged as a promising clinical strategy for liver carcinoma.
Collapse
Affiliation(s)
- Hongchi Yu
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| | - Yang Shen
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| | - Jingsi Jin
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| | - Yingying Zhang
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| | - Tang Feng
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| | - Xiaoheng Liu
- a Institute of Biomedical Engineering , School of Preclinical and Forensic Medicine, Sichuan University , Chengdu , China
| |
Collapse
|
12
|
Doyle SE, Pahl MC, Siller KH, Ardiff L, Siegrist SE. Neuroblast niche position is controlled by Phosphoinositide 3-kinase-dependent DE-Cadherin adhesion. Development 2017; 144:820-829. [PMID: 28126840 DOI: 10.1242/dev.136713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Correct positioning of stem cells within their niche is essential for tissue morphogenesis and homeostasis. How stem cells acquire and maintain niche position remains largely unknown. Here, we show that a subset of brain neuroblasts (NBs) in Drosophila utilize Phosphoinositide 3-kinase (PI3-kinase) and DE-cadherin to build adhesive contact for NB niche positioning. NBs remain within their native microenvironment when levels of PI3-kinase activity and DE-cadherin are elevated in NBs. This occurs through PI3-kinase-dependent regulation of DE-Cadherin-mediated cell adhesion between NBs and neighboring cortex glia, and between NBs and their ganglion mother cell daughters. When levels of PI3-kinase activity and/or DE-Cadherin are reduced in NBs, NBs lose niche position and relocate to a non-native brain region that is rich in neurosecretory neurons, including those that secrete some of the Drosophila insulin-like peptides. Linking levels of PI3-kinase activity to the strength of adhesive attachment could provide cancer stem cells and hematopoietic stem cells with a means to cycle from trophic-poor to trophic-rich microenvironments.
Collapse
Affiliation(s)
- Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Matthew C Pahl
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Karsten H Siller
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lindsay Ardiff
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
Zhang W, Zhu Y, Li J, Guo Q, Peng J, Liu S, Yang J, Wang Y. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:193-207. [PMID: 26671674 DOI: 10.1089/ten.teb.2015.0290] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weixiang Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yun Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jia Li
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| | - Shichen Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianhua Yang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| |
Collapse
|
14
|
Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater 2015; 20:1-9. [PMID: 25871537 DOI: 10.1016/j.actbio.2015.04.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023]
Abstract
Bone marrow-derived mesenchymal stem and stromal cells (MSCs) are promising candidates for cell-based therapies in diverse conditions including tissue engineering. Advancement of these therapies relies on the ability to direct MSCs toward specific cell phenotypes. Despite identification of applied forces that affect self-maintenance, proliferation, and differentiation of MSCs, mechanisms underlying the integration of mechanically induced signaling cascades and interpretation of mechanical signals by MSCs remain elusive. During the past decade, many researchers have demonstrated that external applied forces can activate osteogenic signaling pathways in MSCs, including Wnt, Ror2, and Runx2. Besides, recent advances have highlighted the critical role of internal forces due to cell-matrix interaction in MSC function. These internal forces can be achieved by the materials that cells reside in through its mechanical properties, such as rigidity, topography, degradability, and substrate patterning. MSCs can generate contractile forces to sense these mechanical properties and thereby perceive mechanical information that directs broad aspects of MSC functions, including lineage commitment. Although many signaling pathways have been elucidated in material-induced lineage specification of MSCs, discovering the mechanisms by which MSCs respond to such cell-generated forces is still challenging because of the highly intricate signaling milieu present in MSC environment. However, bioengineers are bridging this gap by developing platforms to control mechanical cues with improved throughput and precision, thereby enabling further investigation of mechanically induced MSC functions. In this review, we discuss the most recent advances that how applied forces and cell-generated forces may be engineered to determine MSC fate, and overview a subset of the operative signal transduction mechanisms and experimental platforms that have emerged in MSC mechanobiology research. Our main goal is to provide an up-to-date view of MSC mechanobiology that is relevant to both mechanical loading and mechanical properties of the environment, and introduce these emerging platforms for tissue engineering use.
Collapse
|
15
|
Syva SH, Ampon K, Lasimbang H, Fatimah SS. Microenvironmental factors involved in human amnion mesenchymal stem cells fate decisions. J Tissue Eng Regen Med 2015; 11:311-320. [PMID: 26073746 DOI: 10.1002/term.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/12/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Human amnion mesenchymal stem cells (HAMCs) show great differentiation and proliferation potential and also other remarkable features that could serve as an outstanding alternative source of stem cells in regenerative medicine. Recent reports have demonstrated various kinds of effective artificial niche that mimic the microenvironment of different types of stem cell to maintain and control their fate and function. The components of the stem cell microenvironment consist mainly of soluble and insoluble factors responsible for regulating stem cell differentiation and self-renewal. Extensive studies have been made on regulating HAMCs differentiation into specific phenotypes; however, the understanding of relevant factors in directing stem cell fate decisions in HAMCs remain underexplored. In this review, we have therefore identified soluble and insoluble factors, including mechanical stimuli and cues from the other supporting cells that are involved in directing HAMCs fate decisions. In order to strengthen the significance of understanding on the relevant factors involved in stem cell fate decisions, recent technologies developed to specifically mimic the microenvironments of specific cell lineages are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Kamaruzaman Ampon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Malaysia
| | - Helen Lasimbang
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Malaysia
| | | |
Collapse
|
16
|
Abstract
Retinal degenerative diseases, including retinitis pigmentosa, age-related macular degeneration, and glaucoma, still lack effective medical treatments. The stem cell-based regenerative approach has been proposed to treat these degenerative diseases. The major challenge for regenerative ophthalmology is to produce enough desirable retinal neurons in vitro from various stem cell types. Extracellular matrix proteins are important for stem cell self-renewal and differentiation in various systems. They have also been used in combination with various growth factors to expand retinal stem cells and produce desirable retinal neuronal types. This review summarizes our current understanding of how extracellular matrix proteins regulate stem cell function and discusses their application in regenerative ophthalmology.
Collapse
|
17
|
Wan PX, Wang BW, Wang ZC. Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J Stem Cells 2015; 7:448-460. [PMID: 25815128 PMCID: PMC4369500 DOI: 10.4252/wjsc.v7.i2.448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/17/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases.
Collapse
|
18
|
Rice KM, Arvapalli RK, Blough ER. Hyperglycemia Induced Changes in Vascular AKT3 May Inhibit Pressure-Induced Apoptosis in the Rat Inferior Venae Cavae. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojemd.2015.54006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 878] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
20
|
Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development 2013; 140:255-65. [PMID: 23250203 DOI: 10.1242/dev.083139] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated.
Collapse
Affiliation(s)
- Shuyi Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
21
|
Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Hiramatsu H, Restuccia U, Bachi A, Voisin V, Bader GD, Dick JE, Naldini L. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 2012; 11:799-811. [PMID: 23142521 PMCID: PMC3517970 DOI: 10.1016/j.stem.2012.09.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/30/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023]
Abstract
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell-cycle entry, leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway, attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.
Collapse
Affiliation(s)
- Eric R Lechman
- Campbell Family Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen HT, Tsou HK, Chang CH, Tang CH. Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway. PLoS One 2012; 7:e38378. [PMID: 22675553 PMCID: PMC3366938 DOI: 10.1371/journal.pone.0038378] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Background Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. Methodology/Principal Findings Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. Conclusions/Significance Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway.
Collapse
Affiliation(s)
- Hsien-Te Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|