1
|
Mikaelsdottir M, Vidarsson B, Runarsson G, Bjarnadottir U, Onundarson PT, Sigurjonsson OE, Halldorsdottir AM. A comparison of platelet quality between platelets from healthy donors and hereditary hemochromatosis donors over seven-day storage. Transfusion 2020; 61:202-211. [PMID: 33166431 DOI: 10.1111/trf.16176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Therapeutic phlebotomy is the standard treatment of hereditary hemochromatosis (HH), the most common genetic disease in people of Northern European descent. Red cell concentrates from HH donors have been reported safe for transfusion, but little data is available on the storage properties of platelet concentrates from HH donors. STUDY DESIGN AND METHODS Whole blood was collected from 10 healthy individuals and 10 newly diagnosed HH patients with elevated serum ferritin. Platelet-rich plasma (PRP) was prepared and split into four 20-mL units. Platelet quality tests were performed on days 0, 1, 3, 5, and 7 of storage, including platelet aggregation (ADP, arachidonic acid, collagen, and epinephrine agonists), blood gas analysis, flow cytometry (CD41, CD42b, and CD62P expression), and ELISA (sCD40L and sCD62p in supernatant). RESULTS Mean serum ferritin levels were higher in HH patients than in controls (847.5 vs 45.8 ng/mL, P < .001). Overall, no difference in quality test results was observed between the two study groups over 7-day storage (P > .05), including blood gas analysis, platelet aggregation, and expression of surface (CD62p and CD42b) and secreted (sCD62P and sCD40L) activation markers. Expected alterations in metabolic (CO2 and glucose decrease, O2 and lactate increase, P < .001) and platelet activation markers (CD42b decrease, CD62P increase, P < .05) over time were observed in both groups. CONCLUSION Although these findings indicate that platelets of individuals with HH are comparable to platelets from healthy donors, more extensive studies are needed before definite conclusions can be drawn.
Collapse
Affiliation(s)
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Gudmundur Runarsson
- Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Una Bjarnadottir
- Department of Immunology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Anna M Halldorsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Dewitte A, Lepreux S, Villeneuve J, Rigothier C, Combe C, Ouattara A, Ripoche J. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients? Ann Intensive Care 2017; 7:115. [PMID: 29192366 PMCID: PMC5709271 DOI: 10.1186/s13613-017-0337-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond haemostasis, platelets have emerged as versatile effectors of the immune response. The contribution of platelets in inflammation, tissue integrity and defence against infections has considerably widened the spectrum of their role in health and disease. Here, we propose a narrative review that first describes these new platelet attributes. We then examine their relevance to microcirculatory alterations in multi-organ dysfunction, a major sepsis complication. Rapid progresses that are made on the knowledge of novel platelet functions should improve the understanding of thrombocytopenia, a common condition and a predictor of adverse outcome in sepsis, and may provide potential avenues for management and therapy.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France. .,Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.
| | - Sébastien Lepreux
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Claire Rigothier
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Christian Combe
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.,INSERM U1034, Biology of Cardiovascular Diseases, Univ. Bordeaux, 33600, Pessac, France
| | - Jean Ripoche
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
3
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
4
|
Kolarova H, Klinke A, Kremserova S, Adam M, Pekarova M, Baldus S, Eiserich JP, Kubala L. Myeloperoxidase induces the priming of platelets. Free Radic Biol Med 2013; 61:357-69. [PMID: 23603662 DOI: 10.1016/j.freeradbiomed.2013.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/23/2022]
Abstract
The release of myeloperoxidase (MPO) from polymorphonuclear neutrophils is a hallmark of vascular inflammation and contributes to the pathogenesis of vascular inflammatory processes. However, the effects of MPO on platelets as a contributory mechanism in vascular inflammatory diseases remain unknown. Thus, MPO interaction with platelets and its effects on platelet function were examined. First, dose-dependent binding of MPO (between 1.7 and 13.8nM) to both human and mouse platelets was observed. This was in direct contrast to the absence of MPO in megakaryocytes. MPO was localized both on the surface of and inside platelets. Cytoskeleton inhibition did not prevent MPO localization inside the three-dimensional platelet structure. MPO peroxidase activity was preserved upon the MPO binding to platelets. MPO sequestered in platelets catabolized NO, documented by the decreased production of NO (on average, an approximately 2-fold decrease). MPO treatment did not affect the viability of platelets during short incubations; however, it decreased platelet viability after long-term storage for 7 days (an approximately 2-fold decrease). The activation of platelets by MPO was documented by an MPO-mediated increase in the expression of surface platelet receptors P-selectin and PECAM-1 (of about 5 to 20%) and the increased formation of reactive oxygen species (of about 15 to 200%). However, the activation was only partial, as MPO did not induce the aggregation of platelets nor potentiate platelet response to classical activators. Nor did MPO induce a significant release of the content of granules. The activation of platelets by MPO was connected with increased MPO-treated platelet interaction with polymorphonuclear leukocytes (an approximately 1.2-fold increase) in vitro. In conclusion, it can be suggested that MPO can interact with and activate platelets, which can induce priming of platelets, rather than the classical robust activation of platelets. This can contribute to the development of chronic inflammatory processes in vessels.
Collapse
Affiliation(s)
- H Kolarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Animal Physiology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - A Klinke
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - S Kremserova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Animal Physiology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Adam
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - M Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - S Baldus
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - J P Eiserich
- Division of Pulmonary/Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of California at Davis, Davis, CA, USA
| | - L Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; International Clinical Research Center-Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
5
|
Bruserud Ø. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets 2012; 24:85-97. [PMID: 22646762 DOI: 10.3109/09537104.2012.678426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are important in the defense against fungal infections due to their phagocytic and immunoregulatory functions. Platelets also contribute in such immune responses through their release of soluble mediators, including chemokines as well as several other soluble mediators. Both monocytes and platelets express several Toll-like receptors (TLRs) that can recognize fungal molecules and thus initiate intracellular signaling events. TLR ligation on monocytes and platelets may thereby be an early immunological event and function as an initiator of a local proinflammatory crosstalk between platelets and monocytes resulting in (i) monocyte-induced increase of platelet activation and (ii) platelet-associated enhancement of the monocyte activation/function. These effects may have clinical implications both for the efficiency of antifungal treatment and for the predisposition to fungal infections, for example, increased predisposition in patients with thrombocytopenia/monocytopenia due to chemotherapy- or disease-induced bone marrow failure.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
6
|
Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2011; 129:220-4. [PMID: 22178577 DOI: 10.1016/j.thromres.2011.11.036] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 12/11/2022]
Abstract
Platelets have a critical role in haemostasis when vessel wall is injured. Platelet receptors are involved in sequence in this process by slowing platelets down via GPIb/von Willebrand factor to bring them into contact with exposed collagen, then activating them via GPVI to release granule contents and express integrins in a matrix protein binding state. More platelets are incorporated into the growing thrombus and a series of events are set off that finishes with the exposed subendothelium protected by a non-thrombogenic platelet surface and tissue repair underway and the blood flow through the vessel maintained. GPIb is also involved in thrombin activation and, together with GPVI, in the formation of COAT platelets. In thrombosis, pathological changes occur that may lead to life-threatening blockage of vessels. Prevention of thrombosis while maintaining haemostasis remains a major goal of medical research.
Collapse
Affiliation(s)
- Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Berne, CH-3010 Berne, Switzerland.
| |
Collapse
|