1
|
Luo Y, Hou Y, Zhao W, Yang B. Recent progress in gene therapy for familial hypercholesterolemia treatment. iScience 2024; 27:110641. [PMID: 39262805 PMCID: PMC11387600 DOI: 10.1016/j.isci.2024.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder that affects 1 in 300 people, leading to high cholesterol levels and significantly increased cardiovascular risk. The limitations of existing FH treatments underscore the need for innovative therapeutics, and gene therapy offers a promising alternative to address FH more effectively. In this review, we survey approved gene therapy drugs first and then delve into the landscape of gene addition, gene inactivation, and gene editing therapies for hypercholesterolemia, highlighting both approved interventions and those in various stages of development. We also discussed recent advancements in gene editing tools that are essential for their application in gene therapy. Safety considerations inherent to gene therapy are also discussed, emphasizing the importance of mitigating potential risks associated with such treatments. Overall, this review highlights the progress and prospects of gene therapies for FH treatments, underscoring their potential to revolutionize the management of this prevalent and challenging condition.
Collapse
Affiliation(s)
- Yaxin Luo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaofeng Hou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenwen Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
2
|
Khoury E, Croteau L, Lauzière A, Gaudet D. Lessons learned from the evinacumab trials in the treatment of homozygous familial hypercholesterolemia. Future Cardiol 2022; 18:507-518. [PMID: 35469449 DOI: 10.2217/fca-2021-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a life-threatening disease characterized by extremely elevated LDL cholesterol (LDL-C) levels which result in premature atherosclerotic cardiovascular disease. As conventional lipid-lowering therapies, which mainly depend on LDL receptors for LDL particle clearance, remain insufficient for reaching the recommended LDL-C levels in HoFH, agents acting independently of LDL receptors, such as ANGPTL3 inhibitors, constitute a promising target. Evinacumab, a monoclonal antibody directed against ANGPTL3, was approved in the USA in 2021 for treating patients with HoFH. Evinacumab has shown an adequate safety profile with strong LDL-lowering efficacy. This review highlights the development path of evinacumab and provides insight on the lessons learned from trials as well as the hurdles facing accessibility.
Collapse
Affiliation(s)
- Etienne Khoury
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada
| | - Laurent Croteau
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada
| | - Alex Lauzière
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada.,Lipid Clinic, Chicoutimi Hospital
| | - Daniel Gaudet
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada.,Lipid Clinic, Chicoutimi Hospital
| |
Collapse
|
3
|
Alothman L, Bélanger AM, Ruel I, Brunham LR, Hales L, Genest J, Akioyamen LE. Health-related quality of life in homozygous familial hypercholesterolemia: A systematic review and meta-analysis. J Clin Lipidol 2021; 16:52-65. [PMID: 35027327 DOI: 10.1016/j.jacl.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disease characterized by extreme elevations of low-density lipoprotein cholesterol (LDL-C) and extremely premature atherosclerotic cardiovascular disease. To date, impacts of HoFH and its treatment on the psychosocial wellbeing of patients have been poorly characterized. OBJECTIVES We performed a systematic review of the association between HoFH and health-related quality of life (HRQL). METHODS This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) consensus guidelines. We searched MEDLINE, Embase, The Cochrane Controlled Register of Trials (CENTRAL), Pubmed, Scopus, AfricaWide (via EBSCO), and six trial registries and grey-literature databases from inception to May 2021 for published English-language literature examining HRQL and its determinants in HoFH. Studies were eligible if they included patients with confirmed HoFH and evaluated HRQL using validated tools. We performed a narrative synthesis of qualitative findings from included studies and, where data permitted, random-effects meta-analysis reporting standardized mean differences (SMD) and 95% confidence intervals (CIs). RESULTS Our review identified seven eligible studies examining HRQL in HoFH participants. Pooling data from two included studies, we found that relative to the general population, HoFH patients demonstrated significantly poorer HRQL in multiple dimensions of the 36-item Short-Form Health Survey (SF-36) with lower scores in physical functioning (SMD -0.37; 95% CI: -0.60, -0.15), role limitations due to physical health (SMD -0.63; 95% CI: -1.24, -0.02), social functioning (SMD -0.61; 95% CI: -1.19, -0.03), bodily pain (SMD -0.24; 95% CI: -0.46, -0.01), and general health (SMD -1.55; 95% CI: -1.80, -1.31). No differences were observed in domains of energy and vitality, mental health and emotional well-being, or role limitations due to emotional problems. Patients suffered high treatment burdens related to lipoprotein apheresis that compromised educational attainment and employment. However, few patients received psychological support in navigating their treatment challenges. No studies evaluated the association of HoFH with incident anxiety, depression, or other psychopathology. CONCLUSIONS Limited data are available on quality of life for patients with HoFH. The available data suggest that these patients may suffer disease-related impairments in quality of life. Future work should aim to elucidate relationships between HoFH and mental health outcomes and develop interventions to improve quality of life in this population.
Collapse
Affiliation(s)
- Latifah Alothman
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Alexandre M Bélanger
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Liam R Brunham
- Department of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, V6Z 1Y6, Canada
| | - Lindsay Hales
- McGill University Health Center Medical Libraries, Montreal QC, H3G 1A4, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Leo E Akioyamen
- Department of Medicine, University of Toronto, Toronto ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Pokrovsky SN, Afanasieva OI, Ezhov MV. Therapeutic Apheresis for Management of Lp(a) Hyperlipoproteinemia. Curr Atheroscler Rep 2020; 22:68. [DOI: 10.1007/s11883-020-00886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Hari P, Khandelwal P, Smoyer WE. Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr Nephrol 2020; 35:1601-1619. [PMID: 31302760 DOI: 10.1007/s00467-019-04301-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Children with steroid-resistant nephrotic syndrome (SRNS) are exposed to multiple cardiovascular risk factors predisposing them to accelerated atherosclerosis. This risk is negligible in steroid-sensitive nephrotic syndrome, but a substantial proportion of children with SRNS progress to chronic kidney disease, exacerbating the already existing cardiovascular risk. While dyslipidemia is an established modifiable risk factor for cardiovascular disease in adults with NS, it is uncertain to what extent analogous risks exist for children. There is increasing evidence of accelerated atherosclerosis in children with persistently high lipid levels, especially in refractory NS. Abnormalities of lipid metabolism in NS include hypertriglyceridemia and hypercholesterolemia due to elevated apolipoprotein B-containing lipoproteins, decreased lipoprotein lipase and hepatic lipase activity, increased hepatic PCSK9 levels, and reduced hepatic uptake of high-density lipoprotein. Existing guidelines for the management of dyslipidemia in children may be adapted to target lower lipid levels in children with NS, but they will most likely require both lifestyle modifications and pharmacological therapy. While there is a lack of data from randomized controlled trials in children with NS demonstrating the benefit of lipid-lowering drugs, therapies including statins, bile acid sequestrants, fibrates, ezetimibe, and LDL apheresis have all been suggested and/or utilized. However, concerns with the use of lipid-lowering drugs in children include unclear side effect profiles and unknown long-term impacts on neurological development and puberty. The recent introduction of anti-PCSK9 monoclonal antibodies and other therapies targeted to the molecular mechanisms of lipid transport disrupted in NS holds promise for the future treatment of dyslipidemia in NS.
Collapse
Affiliation(s)
- Pankaj Hari
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - William E Smoyer
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Jawi MM, Frohlich J, Chan SY. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids 2020; 2020:3491764. [PMID: 32099678 PMCID: PMC7016456 DOI: 10.1155/2020/3491764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein(a) [Lp(a)], aka "Lp little a", was discovered in the 1960s in the lab of the Norwegian physician Kåre Berg. Since then, we have greatly improved our knowledge of lipids and cardiovascular disease (CVD). Lp(a) is an enigmatic class of lipoprotein that is exclusively formed in the liver and comprises two main components, a single copy of apolipoprotein (apo) B-100 (apo-B100) tethered to a single copy of a protein denoted as apolipoprotein(a) apo(a). Plasma levels of Lp(a) increase soon after birth to a steady concentration within a few months of life. In adults, Lp(a) levels range widely from <2 to 2500 mg/L. Evidence that elevated Lp(a) levels >300 mg/L contribute to CVD is significant. The improvement of isoform-independent assays, together with the insight from epidemiologic studies, meta-analyses, genome-wide association studies, and Mendelian randomization studies, has established Lp(a) as the single most common independent genetically inherited causal risk factor for CVD. This breakthrough elevated Lp(a) from a biomarker of atherosclerotic risk to a target of therapy. With the emergence of promising second-generation antisense therapy, we hope that we can answer the question of whether Lp(a) is ready for prime-time clinic use. In this review, we present an update on the metabolism, pathophysiology, and current/future medical interventions for high levels of Lp(a).
Collapse
Affiliation(s)
- Motasim M. Jawi
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
- Department of Clinical PhysiologyCorrection: Department of Physiology, University of Jeddah, P.O. Box: 24, Jeddah 21959, Saudi Arabia
| | - Jiri Frohlich
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Sammy Y. Chan
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver V5Z 1M9, Canada
| |
Collapse
|
7
|
Hardersen R, Enebakk T, Christiansen D, Ludviksen JK, Mollnes TE, Lappegård KT, Hovland A. Comparison of cytokine changes in three different lipoprotein apheresis systems in an ex vivo whole blood model. J Clin Apher 2019; 35:104-116. [DOI: 10.1002/jca.21765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Randolf Hardersen
- Department of Nephrology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | - Terje Enebakk
- Department of Nephrology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | | | | | - Tom E. Mollnes
- Research LaboratoryNordland Hospital Trust Bodø Norway
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Centre of Molecular Inflammation ResearchNorwegian University of Science and Technology Trondheim Norway
- Department of Immunology and University of Oslo, Institute of Clinical Medicine, Faculty of MedicineOslo University Hospital Oslo Norway
| | - Knut Tore Lappegård
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Department of Cardiology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | - Anders Hovland
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Department of Cardiology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| |
Collapse
|
8
|
Sachais BS, Shaz BH. Apheresis to Mitigate Atherosclerotic Vascular Disease. Am J Hypertens 2018; 31:945-949. [PMID: 30016414 DOI: 10.1093/ajh/hpy068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/19/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Therapeutic apheresis is a term used to describe a group of treatments where blood components are separated in real time, and one component is removed, exchanged, and/or treated to remove pathogenic substances from the circulation. Plasma exchange, which removed all plasma components, and lipid apheresis which selectively removes lipoproteins from circulation, have both been used to treat atherosclerotic vascular diseases. METHODS To review the literature regarding the application of therapeutic apheresis for atherosclerotic vascular diseases. RESULTS Primarily lipid apheresis is used to treat atherosclerotic vascular diseases, particularly familial hypercholesterolemia, lipoprotein (a) hyperlipoproteinemia and peripheral vascular diseases. Lipid apheresis can be used as first line or second line treatment with a strong evidenced-based recommendation. Its use has decreased atherosclerotic events. CONCLUSION Lipid apheresis is an important therapy for the treatment of familial hypercholesterolemia, lipoprotein (a) hyperlipoproteinemia and peripheral vascular diseases. Lipid apheresis does more than remove low-density lipoproteins and other lipoproteins but also decreases inflammatory markers and improves blood flow.
Collapse
Affiliation(s)
| | - Beth H Shaz
- New York Blood Center, New York, New York, USA
| |
Collapse
|
9
|
Hegele RA. Learning From Patients With Ultrarare Conditions. J Am Coll Cardiol 2018; 71:289-291. [DOI: 10.1016/j.jacc.2017.09.1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
|
10
|
|
11
|
Pokrovsky SN, Afanasieva OI, Safarova MS, Balakhonova TV, Matchin YG, Adamova IYU, Konovalov GA, Ezhov MV. Specific Lp(a) apheresis: A tool to prove lipoprotein(a) atherogenicity. ATHEROSCLEROSIS SUPP 2017; 30:166-173. [PMID: 29096833 DOI: 10.1016/j.atherosclerosissup.2017.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND An elevated lipoprotein(a) (Lp(a)) level is observed in more than 30% of patients with stable ischemic heart disease (SIHD). We conducted an investigation of the effects of specific Lp(a) apheresis on the progression of atherosclerosis in SIHD patients with Lp(a) levels greater than 50 mg/dL. METHODS We prospectively enrolled 15 patients diagnosed with SIHD based on symptom-driven coronary angiography findings, with Lp(a) ≥50 mg/dL and a low density lipoprotein cholesterol (LDL-C) ≤2.5 mmol/L, who were on long-term statin therapy. They underwent weekly Lp(a) apheresis using Lp(a) Lipopak® adsorption columns which contain monospecific sheep polyclonal antibodies against human Lp(a). Fifteen age and gender matched SIHD patients receiving atorvastatin monotherapy served as controls. At baseline and 18 months post-treatment, quantitative coronary angiography, intracoronary ultrasound with virtual histology and carotid ultrasound were performed. Lipid profile, including Lp(a), was measured at the scheduled visits, and before and after each apheresis procedure. Levels of high-sensitivity C-reactive protein (hsCRP), matrix metalloproteinases (MMP)-7 and 9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and 2 were determined at baseline and at the end of the study period. RESULTS Each specific Lp(a) apheresis procedure was carried out with two adsorption columns resulting in an average acute decrease in Lp(a) levels of 75% (from 110 ± 22 to 29 ± 16 mg/dL) without significant changes in other plasma components. Lp(a) reduction over the course of 18 months was associated with a decrease in the mean percent diameter stenosis of 5.05% and an increase in minimal lumen diameter of 14%; the mean total atheroma volume was reduced by 4.60 mm3 (p < 0.05 for all). There was a decrease in absolute common carotid intima-media thickness in the Lp(a) apheresis group of 0.07 ± 0.15 mm both from baseline and compared with the control group (p = 0.01). Levels of hsCRP were reduced by 40% in patients on Lp(a) apheresis without significant changes in the levels of other biomarkers at the end of the study. CONCLUSION Reduction of the atherosclerotic burden in coronary and carotid arteries was observed in patients treated with specific Lp(a) apheresis and statin over 18 months compared with statin therapy alone. These findings support the atherogenic role of Lp(a) and reinforce the need to assess the effects of Lp(a)-lowering on cardiovascular events and mortality. Trial Registration Clinicaltrials.gov (NCT02133807).
Collapse
Affiliation(s)
- S N Pokrovsky
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia.
| | - O I Afanasieva
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| | - M S Safarova
- Atherosclerosis Department, Institute of Clinical Cardiology named after A.L. Myasnikov, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| | - T V Balakhonova
- Ultrasound Laboratory, Institute of Clinical Cardiology named after A.L. Myasnikov, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| | - Yu G Matchin
- Catheterization Laboratory, Institute of Clinical Cardiology named after A.L. Myasnikov, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| | - I Y U Adamova
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| | - G A Konovalov
- Center of Extracorporeal Therapies, MEDSI Clinic, 3A, Georgian Lane, Moscow 123056, Russia
| | - M V Ezhov
- Atherosclerosis Department, Institute of Clinical Cardiology named after A.L. Myasnikov, Federal State Institution "Russian Cardiology Research and Production Center" of Ministry of Health of the Russian Federation, 15A, 3d Cherepkovskaya Street, Moscow 121552, Russia
| |
Collapse
|
12
|
|
13
|
Rubba P, Gentile M, Marotta G, Iannuzzi A, Sodano M, De Simone B, Jossa F, Iannuzzo G, Giacobbe C, Di Taranto MD, Fortunato G. Causative mutations and premature cardiovascular disease in patients with heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol 2017; 24:1051-1059. [DOI: 10.1177/2047487317702040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Gennaro Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | | | - Marta Sodano
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Biagio De Simone
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Fabrizio Jossa
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Carola Giacobbe
- CEINGE S.c.a r.l. Biotecnologie Avanzate, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | - Giuliana Fortunato
- CEINGE S.c.a r.l. Biotecnologie Avanzate, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
14
|
Julius U. Lipoprotein apheresis in the management of severe hypercholesterolemia and of elevation of lipoprotein(a): current perspectives and patient selection. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2016; 9:349-360. [PMID: 27785114 PMCID: PMC5067066 DOI: 10.2147/mder.s98889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review reports the current situation with respect to therapeutic options (lifestyle and drugs) reducing the concentrations of atherogenic low-density lipoprotein cholesterol (LDL-C) and lipoprotein(a) (Lp[a]). Three lipoprotein apheresis (LA) principles have been realized: precipitation, filtration, and adsorption. Available LA methods are herein described in detail - major components, pumps, extracorporeal volume, treated volume, and anticoagulation. General features of all LA methods as well as pleotropic effects are elaborated. Indications for LA therapy are quoted: homozygous familial hypercholesterolemia (HCH), severe HCH, and isolated elevation of Lp(a) and progress of atherosclerotic disease. A major focus is on the evidence of the effect of LA on cardiovascular outcome data, and the most important publications are cited in this context. The best studies have been performed in patients with elevated Lp(a) in whom cardiovascular events were reduced by more than 80%. Major adverse effects and contraindications are listed. The impact of an LA therapy on patient quality of life and the requirements they have to fulfill are also highlighted. Finally, the future role of LA in treating high-risk patients with high LDL-C and/or high Lp(a) is discussed. It is probable that the significance of LA for treating patients with elevated LDL-C will decrease (with the exception of homozygous familial HCH) due to the application of PCSK9 inhibitors. The antisense oligonucleotide against apolipoprotein(a) could replace LA in patients with high Lp(a), provided positive outcome data are generated.
Collapse
Affiliation(s)
- Ulrich Julius
- Lipidology and Center for Extracorporeal Therapy, Department for Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Currently, different methods for extracorporeal elimination of atherogenic apolipoprotein B100 containing lipoprotein particles are used in clinical practice. Most of them effectively remove both lipoprotein(a) [Lp(a)] and LDL. The aim of this review is to highlight research describing the clinical advantages of specific Lp(a) immunosorption compared with other lipoprotein apheresis systems. RECENT FINDINGS Data on the utility of lipoprotein apheresis in patients with elevated Lp(a) level are limited. However, several longitudinal studies demonstrated improvement in cardiovascular outcomes when both Lp(a) and LDL cholesterol levels were decreased with different apheresis systems. The main limitation of these trials is the absence of a control group. First developed in 1991, studies on apheresis with a specific immunosorbent to Lp(a) were small and noncontrolled before 2000s. The only prospective controlled clinical trial utilising Lp(a) apheresis (Clinicaltrials.gov NCT02133807), demonstrated regression of coronary and carotid atherosclerosis when Lp(a) was removed weekly for 18 months. SUMMARY Lipoprotein apheresis usually affects multiple lipoproteins, and there are minimal data regarding the effect of specific removal of Lp(a) alone. There is a need for randomized controlled trial with specific Lp(a) apheresis to investigate its effect on cardiovascular outcomes.
Collapse
Affiliation(s)
- Sergei N Pokrovsky
- 'Russian Cardiology Research and Production Complex' of Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | |
Collapse
|