1
|
Xu W, Wang Z, Tao Z, Li K, Lu L. Discover QTLs for the level of blood components in Shaoxing duck using GWAS and haplotype sharing analysis. Anim Biotechnol 2024; 35:2390940. [PMID: 39137276 DOI: 10.1080/10495398.2024.2390940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Blood composition is indicative of health-related traits such as immunity and metabolism. The use of molecular genetics to investigate alterations in these attributes in laying ducks is a novel approach. Our objective was to employ genome - wide association studies (GWAS) and haplotype - sharing analysis to identify genomic regions and potential genes associated with 11 blood components in Shaoxing ducks. Our findings revealed 35 SNPs and 1 SNP associated with low-density lipoprotein cholesterol (LDL) and globulin (GLB), respectively. We identified 36 putative candidate genes for the LDL trait in close proximity to major QTLs and key loci. Based on their biochemical and physiological properties, TRA2A, NPY, ARHGEF26, DHX36, and AADAC are the strongest putative candidate genes. Through linkage disequilibrium analysis and haplotype sharing analysis, we identified three haplotypes and one haplotype, respectively, that were significantly linked with LDL and GLB. These haplotypes could be selected as potential candidate haplotypes for molecular breeding of Shaoxing ducks. Additionally, we utilized a bootstrap test to verify the reliability of GWAS with small experimental samples. The test can be accessed at https://github.com/xuwenwu24/Bootstrap-test.
Collapse
Affiliation(s)
- Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenzhen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kui Li
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock & Poultry Testing Station, Hangzhou, Zhejiang, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
3
|
Zhou Q, Kong D, Li W, Shi Z, Liu Y, Sun R, Ma X, Qiu C, Liu Z, Hou Y, Jiang J. LncRNA HOXB-AS3 binding to PTBP1 protein regulates lipid metabolism by targeting SREBP1 in endometrioid carcinoma. Life Sci 2023; 320:121512. [PMID: 36858312 DOI: 10.1016/j.lfs.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Endometrial cancer (EC) is a malignant tumor with a high incidence in women, and the survival rate of high-risk patients decreases significantly after disease progression. The regulatory role of long non-coding RNAs (LncRNAs) in tumors has been widely appreciated, but there have been few studies in EC. To investigate the effect of HOXB-AS3 in EC, we used bioinformatics tools for prediction and collected clinical samples to detect the expression of HOXB-AS3. Colony formation assay, MTT assay, flow cytometry and apoptosis assay, and transwell assay were used to verify the role of HOXB-AS3 in EC. HOXB-AS3 was upregulated in EC, promoted the proliferation and invasive ability of EC cells, and inhibited apoptosis. In addition, the ROC curve illustrated its diagnostic value. We explored experiments via lentiviral transduction, FISH, Oil Red O staining, TC and FFA content detection, RNA-pulldown, RIP, and other mechanisms to reveal that HOXB-AS3 can bind to PTBP1 and co-regulate the expression of SREBP1, thereby regulating lipid metabolism in EC cells. To the best of our knowledge, this is the first study on HOXB-AS3 in disorders of lipid metabolism in EC. In addition, we believe HOXB-AS3 has the potential to be a neoplastic marker or a therapeutic target.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yixin Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
5
|
Zanoni P, Panteloglou G, Othman A, Haas JT, Meier R, Rimbert A, Futema M, Abou Khalil Y, Norrelykke SF, Rzepiela AJ, Stoma S, Stebler M, van Dijk F, Wijers M, Wolters JC, Dalila N, Huijkman NCA, Smit M, Gallo A, Carreau V, Philippi A, Rabès JP, Boileau C, Visentin M, Vonghia L, Weyler J, Francque S, Verrijken A, Verhaegen A, Van Gaal L, van der Graaf A, van Rosmalen BV, Robert J, Velagapudi S, Yalcinkaya M, Keel M, Radosavljevic S, Geier A, Tybjaerg-Hansen A, Varret M, Rohrer L, Humphries SE, Staels B, van de Sluis B, Kuivenhoven JA, von Eckardstein A. Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circ Res 2022; 130:80-95. [PMID: 34809444 DOI: 10.1161/circresaha.120.318141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Now with Institute of Medical Genetics, University of Zurich, Switzerland (P.Z.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Grigorios Panteloglou
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Alaa Othman
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland (A.O.)
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, France (J.T.H., B.S.)
| | - Roger Meier
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Antoine Rimbert
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.).,Now with Inserm UMR 1087/CNRS UMR 6291 IRS-UN, Nantes, France (A.R.)
| | - Marta Futema
- Cardiology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (M.F.)
| | - Yara Abou Khalil
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy and Pôle technologie Santé (PTS), Saint-Joseph University, Beirut, Lebanon (Y.A.K.)
| | - Simon F Norrelykke
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Andrzej J Rzepiela
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Szymon Stoma
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Michael Stebler
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Freerk van Dijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.D., A.v.d.G.)
| | - Melinde Wijers
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Justina C Wolters
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (N.D., A.T.-H.)
| | - Nicolette C A Huijkman
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Marieke Smit
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Antonio Gallo
- AP-HP, Endocrinology and Metabolism Department, Human Research Nutrition Center, Pitié-Salpêtrière Hospital, Paris, France (A. Gallo, V.C.)
| | - Valérie Carreau
- AP-HP, Endocrinology and Metabolism Department, Human Research Nutrition Center, Pitié-Salpêtrière Hospital, Paris, France (A. Gallo, V.C.)
| | - Anne Philippi
- Université de Paris, Faculté de Médecine Paris-Diderot, UMR-S958 Paris, France; Now with Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France (A.P.)
| | - Jean-Pierre Rabès
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,AP-HP, Université Paris-Saclay, Paris, France (J.-P.R.).,UFR Simone Veil des Sciences de la Santé, UVSQ, Montigny-Le-Bretonneux, France (J.-P.R.)
| | - Catherine Boileau
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,AP-HP, Genetics Department, CHU Xavier Bichat, Université de Paris, France (C.B.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M. Visentin)
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.).,Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.)
| | - Jonas Weyler
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.)
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.).,Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.)
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Ann Verhaegen
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Adriaan van der Graaf
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.D., A.v.d.G.)
| | - Belle V van Rosmalen
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands (B.V.v.R.)
| | - Jerome Robert
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Molecular Cardiology, University of Zurich, Switzerland (S.V.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.Y.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Michaela Keel
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Silvija Radosavljevic
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Germany (A. Geier)
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (N.D., A.T.-H.)
| | - Mathilde Varret
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret)
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Steve E Humphries
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (S.E.H.)
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, France (J.T.H., B.S.)
| | - Bart van de Sluis
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| |
Collapse
|
6
|
Li Y, Xu J, Lu Y, Bian H, Yang L, Wu H, Zhang X, Zhang B, Xiong M, Chang Y, Tang J, Yang F, Zhao L, Li J, Gao X, Xia M, Tan M, Li J. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab 2021; 33:2004-2020.e9. [PMID: 34614409 DOI: 10.1016/j.cmet.2021.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an advanced stage of nonalcoholic fatty liver disease (NAFLD) with serious consequences that currently lacks approved pharmacological therapies. Recent studies suggest the close relationship between the pathogenesis of NAFLD and the dysregulation of RNA splicing machinery. Here, we reveal death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2) is markedly upregulated in the livers of both NAFLD/NASH patients and NAFLD/NASH diet-fed mice. Hepatic deletion of DRAK2 suppresses the progression of hepatic steatosis to NASH. Comprehensive analyses of the phosphoproteome and transcriptome indicated a crucial role of DRAK2 in RNA splicing and identified the splicing factor SRSF6 as a direct binding protein of DRAK2. Further studies demonstrated that binding to DRAK2 inhibits SRSF6 phosphorylation by the SRSF kinase SRPK1 and regulates alternative splicing of mitochondrial function-related genes. In conclusion, our findings reveal an indispensable role of DRAK2 in NAFLD/NASH and offer a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Beilei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Maoqian Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yafei Chang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
7
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
8
|
Chen W, Li L, Wang J, Li Q, Zhang R, Wang S, Wu Y, Xing D. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta 2021; 517:15-22. [DOI: 10.1016/j.cca.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
|
9
|
Gourain V, Armant O, Lübke L, Diotel N, Rastegar S, Strähle U. Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Front Neurosci 2021; 15:671249. [PMID: 34054419 PMCID: PMC8162057 DOI: 10.3389/fnins.2021.671249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Zebrafish is an attractive model to investigate regeneration of the nervous system. Despite major progress in our understanding of the underlying processes, the transcriptomic changes are largely unknown. We carried out a computational analysis of the transcriptome of the regenerating telencephalon integrating changes in the expression of mRNAs, their splice variants and investigated the putative role of regulatory RNAs in the modulation of these transcriptional changes. Profound changes in the expression of genes and their splice variants engaged in many distinct processes were observed. Differential transcription and splicing are important processes in response to injury of the telencephalon. As exemplified by the coordinated regulation of the cholesterol synthesizing enzymes and transporters, the genome responded to injury of the telencephalon in a multi-tiered manner with distinct and interwoven changes in expression of enzymes, transporters and their regulatory molecules. This coordinated genomic response involved a decrease of the mRNA of the key transcription factor SREBF2, induction of microRNAs (miR-182, miR-155, miR-146, miR-31) targeting cholesterol genes, shifts in abundance of splice variants as well as regulation of long non-coding RNAs. Cholesterol metabolism appears to be switched from synthesis to relocation of cholesterol. Based on our in silico analyses, this switch involves complementary and synergistic inputs by different regulatory principles. Our studies suggest that adaptation of cholesterol metabolism is a key process involved in regeneration of the injured zebrafish brain.
Collapse
Affiliation(s)
- Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1064 Centre de Recherche en Transplantation en Immunologie, Nantes, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-Lez-Durance, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien CYROI, Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,COS, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Ahangari N, Doosti M, Ghayour Mobarhan M, Sahebkar A, Ferns GA, Pasdar A. Personalised medicine in hypercholesterolaemia: the role of pharmacogenetics in statin therapy. Ann Med 2020; 52:462-470. [PMID: 32735150 PMCID: PMC7877934 DOI: 10.1080/07853890.2020.1800074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Statins are the first-line choice in Lipid-lowering therapy to reduce cardiovascular risk. In a continuous attempt to optimise treatment success, there is a need for additional research on genes and related molecular pathways that can determine the efficacy and toxicity of lipid-lowering drugs. Several variations within genes associated with lipid metabolism, including those involved in uptake, distribution and metabolism of statins have been reported. The purpose of this study was to evaluate the effect of genetic variations in the key genes responsible for statins' metabolism and their role in personalised medicine and pharmacogenetic testing (PGx) in patients treated with such drugs. Genetic assessment for specific known SNPs within the most known genes such as ABCG2, SLCO1B1, CYP3A4, and HMGCR, appears likely to predict the efficacy of statin therapy and prevent their side effects but does not necessarily reduce the risk of cardiovascular events. Key Messages Hypercholesterolaemia patients show different response to statin therapy. Several variations within genes associated with statin metabolism have been investigated. Genetic assessment for specific known SNPs within the most known genes may improve the efficacy of statins treatment and prevent their side effects.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E, Jimenez-Mateos EM, Björkhem I, DeFelipe J, Cedazo-Minguez A. 27-Hydroxycholesterol Induces Aberrant Morphology and Synaptic Dysfunction in Hippocampal Neurons. Cereb Cortex 2020; 29:429-446. [PMID: 30395175 PMCID: PMC6294414 DOI: 10.1093/cercor/bhy274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition. Furthermore, PSD95 has an essential function for synaptic maintenance and plasticity. PSD95 synthesis is controlled by the REST-miR124a-PTBP1 axis. Here, we report that high levels of 27-OH induce REST-miR124a-PTBP1 axis dysregulation in a possible RxRγ-dependent manner, suggesting that 27-OH reduces PSD95 levels through this mechanism. Our results reveal a possible molecular link between hypercholesterolemia and neurodegeneration. We discuss the possibility that reduction of 27-OH levels could be a useful strategy for preventing memory and cognitive decline in neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Raul Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad A Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Matute
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eva Maria Jimenez-Mateos
- Department of Physiology and Medical Physics Royal, College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, Sánchez-Frías ME, Sánchez-Sánchez R, Ventura S, López-Miranda J, Kineman RD, de la Mata M, Castaño JP, Gahete MD, Luque RM. Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2019; 104:3389-3402. [PMID: 30901032 PMCID: PMC6590982 DOI: 10.1210/jc.2019-00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is a common obesity-associated pathology characterized by hepatic fat accumulation, which can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Obesity is associated with profound changes in gene-expression patterns of the liver, which could contribute to the onset of comorbidities. OBJECTIVE As these alterations might be linked to a dysregulation of the splicing process, we aimed to determine whether the dysregulation in the expression of splicing machinery components could be associated with NAFLD. PARTICIPANTS We collected 41 liver biopsies from nonalcoholic individuals with obesity, with or without hepatic steatosis, who underwent bariatric surgery. INTERVENTIONS The expression pattern of splicing machinery components was determined using a microfluidic quantitative PCR-based array. An in vitro approximation to determine lipid accumulation using HepG2 cells was also implemented. RESULTS The liver of patients with obesity and steatosis exhibited a severe dysregulation of certain splicing machinery components compared with patients with obesity without steatosis. Nonsupervised clustering analysis allowed the identification of three molecular phenotypes of NAFLD with a unique fingerprint of alterations in splicing machinery components, which also presented distinctive hepatic and clinical-metabolic alterations and a differential response to bariatric surgery after 1 year. In addition, in vitro silencing of certain splicing machinery components (i.e., PTBP1, RBM45, SND1) reduced fat accumulation and modulated the expression of key de novo lipogenesis enzymes, whereas conversely, fat accumulation did not alter spliceosome components expression. CONCLUSION There is a close relationship between splicing machinery dysregulation and NAFLD development, which should be further investigated to identify alternative therapeutic targets.
Collapse
Affiliation(s)
- Mercedes del Río-Moreno
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Sandra González-Rubio
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Córdoba, Spain
| | - Gustavo Ferrín
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Córdoba, Spain
| | - Oscar Reyes
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Córdoba, Spain
| | - Marina E Sánchez-Frías
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Anatomical Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Anatomical Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Computer Sciences, University of Córdoba, Córdoba, Spain
- Department of Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
- Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manuel de la Mata
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| |
Collapse
|
13
|
Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci U S A 2017; 114:E9740-E9749. [PMID: 29078384 DOI: 10.1073/pnas.1713050114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing plays important roles in generating different transcripts from one gene, and consequently various protein isoforms. However, there has been no systematic approach that facilitates characterizing functional roles of protein isoforms in the context of the entire human metabolism. Here, we present a systematic framework for the generation of gene-transcript-protein-reaction associations (GeTPRA) in the human metabolism. The framework in this study generated 11,415 GeTPRA corresponding to 1,106 metabolic genes for both principal and nonprincipal transcripts (PTs and NPTs) of metabolic genes. The framework further evaluates GeTPRA, using a human genome-scale metabolic model (GEM) that is biochemically consistent and transcript-level data compatible, and subsequently updates the human GEM. A generic human GEM, Recon 2M.1, was developed for this purpose, and subsequently updated to Recon 2M.2 through the framework. Both PTs and NPTs of metabolic genes were considered in the framework based on prior analyses of 446 personal RNA-Seq data and 1,784 personal GEMs reconstructed using Recon 2M.1. The framework and the GeTPRA will contribute to better understanding human metabolism at the systems level and enable further medical applications.
Collapse
|
14
|
Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2030-2042. [PMID: 28784847 DOI: 10.4049/jimmunol.1602183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Alternative splicing occurs frequently in many genes, especially those involved in immunity. Unfortunately, the functions of many alternatively spliced molecules from immunologically relevant genes remain unknown. Classical HLA-I molecules are expressed on almost all nucleated cells and play a pivotal role in both innate and adaptive immunity. Although splice variants of HLA-I genes have been reported, the details of their functions have not been reported. In the current study, we determined the characteristics, expression, and function of a novel splice variant of HLA-A11 named HLA-A11svE4 HLA-A11svE4 is located on the cell surface without β2-microglobulin (β2m). Additionally, HLA-A11svE4 forms homodimers as well as heterodimers with HLA-A open conformers, instead of combining with β2m. Moreover, HLA-A11svE4 inhibits the activation of NK cells to protect target cells. Compared with β2m and HLA-A11, the heterodimer of HLA-A11svE4 and HLA-A11 protected target cells from lysis by NK cells more effectively. Furthermore, HLA-AsvE4 expression was upregulated by HIV-1 in vivo and by HSV, CMV, and hepatitis B virus in vitro. In addition, our findings indicated that HLA-A11svE4 molecules were functional in activating CD8+ T cells through Ag presentation. Taken together, these results suggested that HLA-A11svE4 can homodimerize and form a novel heterodimeric complex with HLA-A11 open conformers. Furthermore, the data are consistent with HLA-A11svE4 playing a role in the immune escape of HIV-1.
Collapse
Affiliation(s)
- Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| |
Collapse
|
15
|
González-Prendes R, Quintanilla R, Amills M. Investigating the genetic regulation of the expression of 63 lipid metabolism genes in the pig skeletal muscle. Anim Genet 2017; 48:606-610. [DOI: 10.1111/age.12586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 01/22/2023]
Affiliation(s)
- R. González-Prendes
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus de la Universitat Autònoma de Barcelona Bellaterra 08193 Spain
| | - R. Quintanilla
- Animal Breeding and Genetics Program; Institut de Recerca i Tecnologia Agroalimentàries (IRTA); Torre Marimon Caldes de Montbui 08140 Spain
| | - M. Amills
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus de la Universitat Autònoma de Barcelona Bellaterra 08193 Spain
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
16
|
Li Y, Zhou J. Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease. Exp Biol Med (Maywood) 2017; 242:1117-1125. [PMID: 28467182 DOI: 10.1177/1535370217707729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alcohol exposure is a major reason of morbidity and mortality all over the world, with much of detrimental consequences attributing to alcoholic liver disease (ALD). With the continued ethanol consumption, alcoholic fatty liver disease (AFLD, the earliest and reversible form of ALD) can further develop to more serious forms of alcoholic liver damage, including alcoholic steatohepatitis, fibrosis/cirrhosis, and even eventually progress to hepatocellular carcinoma and liver failure. Furthermore, cell trauma, inflammation, oxidative stress, regeneration, and bacterial translocation are crucial promoters of ethanol-mediated liver lesions. AFLD is characterized by excessive fat deposition in liver induced by excessive drinking, which is related closely to the raised synthesis of fatty acids and triglyceride, reduction of mitochondrial fatty acid β-oxidation, and the aggregation of very-low-density lipoprotein (VLDL). Although little is known about the cellular and molecular mechanisms of AFLD, it seems to be correlated to diverse signal channels. Massive studies have suggested that liver steatosis is closely associated with the inhibition of silent information regulator 1 (SIRT1) and the augment of lipin1 β/α ratio mediated by ethanol. Recently, serine/arginine-rich splicing factor 10 (SFRS10), a specific molecule functioning in alternative splicing of lipin 1 (LPIN1) pre-mRNAs, has emerged as the central connection between SIRT1 and lipin1 signaling. It seems a new signaling axis, SIRT1-SFRS10-LPIN1 axis, acting in the pathogenesis of AFLD exists. This article aims to further explore the interactions among the above three molecules and their influences on the development of AFLD. Impact statement ALD is a major health burden in industrialized countries as well as China. AFLD, the earliest and reversible form of ALD, can progress to hepatitis, fibrosis/cirrhosis, even hepatoma. While the mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. SIRT1, SFRS10, and LIPIN1 had been separately reported to participate in lipid metabolism and the pathogenesis of AFLD. Noteworthy, we found the connection among them via searching articles in PubMed and we had elaborated the connection in detail in this minireview. It seems a new signaling axis, SIRT1-SFRS10-LIPIN1 axis, acting in the pathogenesis of AFLD exists. Further study aimed at SIRT1-SFRS10-LIPIN1 signaling system will possibly offer a more effective therapeutic target for AFLD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Junying Zhou
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
17
|
Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017; 8:133. [PMID: 28680417 PMCID: PMC5478874 DOI: 10.3389/fendo.2017.00133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the worldwide obesity epidemic and currently affects one-third of adults or about one billion people worldwide. NAFLD is predicted to affect over 50% of the world's population by the end of the next decade. It is the most common form of liver disease and is associated with increased risk for progression to a more severe form non-alcoholic steatohepatitis, as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepatocellular carcinoma. This review article will focus on the role of alternative splicing in normal liver physiology and dysregulation in liver disease.
Collapse
Affiliation(s)
- Nicholas J. G. Webster
- Medical Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, School of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Nicholas J. G. Webster,
| |
Collapse
|
18
|
Gehrmann T, Pelkmans JF, Lugones LG, Wösten HAB, Abeel T, Reinders MJT. Schizophyllum commune has an extensive and functional alternative splicing repertoire. Sci Rep 2016; 6:33640. [PMID: 27659065 PMCID: PMC5034255 DOI: 10.1038/srep33640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023] Open
Abstract
Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.
Collapse
Affiliation(s)
- Thies Gehrmann
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
| | - Jordi F. Pelkmans
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Luis G. Lugones
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Han A. B. Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts MA02142, United States of America
| | - Marcel J. T. Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
| |
Collapse
|
19
|
Tang JY, Lee JC, Hou MF, Wang CL, Chen CC, Huang HW, Chang HW. Alternative splicing for diseases, cancers, drugs, and databases. ScientificWorldJournal 2013; 2013:703568. [PMID: 23766705 PMCID: PMC3674688 DOI: 10.1155/2013/703568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 2013; 288:18707-15. [PMID: 23696639 DOI: 10.1074/jbc.r113.479808] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|