1
|
Chouery E, Mehawej C, Saade R, Barake R, Zarecki P, Gennery C, Corbani S, Korban R, Hamam A, Nasser Eldin J, Yamout M, Banna M, Yamout AKA, Adhami F, Megarbane A, Mustapha M. POLD3 haploinsufficiency is linked to non-syndromic sensorineural adult-onset progressive hearing and balance impairments. Eur J Hum Genet 2024:10.1038/s41431-024-01715-7. [PMID: 39414923 DOI: 10.1038/s41431-024-01715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hearing impairment (HI) is a significant health concern globally, influenced by genetic and environmental factors. We had identified a homozygous pathogenic variant in POLD3 in a Lebanese patient with an autosomal congenital recessive syndromic hearing loss (MIM#620869). This variant was found at heterozygous state in the parents, who developed progressive hearing impairment around age 40. We conducted a thorough clinical and genetic assessment of sixteen family members, including physical exams, audiometry and vestibular function evaluations. Additionally, gene expression analysis of the Pold3 gene was performed in mice using RNAscope. Twelve individuals were heterozygous for the variant in POLD3, of whom eight showed bilateral adult-onset HI, typically starting around ages 40-50, and two older patients displaying unilateral vestibular weakness. Additionally, two carriers of the variant developed cancer at an early age. RNAscope confirmed Pold3 expression in auditory and vestibular neurons. Exome sequencing analysis excluded the presence of pathogenic variants in any known hearing impairment or cancer predisposition genes. We present herein, for the first time, evidence of a heterozygous pathogenic POLD3 variant associated with a novel form of autosomal dominant progressive adult-onset hearing and vestibular impairments. We also highlight the necessity for further exploration of the role of POLD3 in cancer predisposition.
Collapse
Affiliation(s)
- Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rami Saade
- Department of Otolaryngology-Head and Neck Surgery, Lebanese American University, Byblos, Lebanon
| | - Rana Barake
- Department of Otolaryngology-Head and Neck Surgery, Lebanese American University, Byblos, Lebanon
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Sandra Corbani
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rima Korban
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ali Hamam
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jade Nasser Eldin
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | | | | | - Fawaz Adhami
- Adhami Advanced Audiology Center, Tripoli, Lebanon
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
- Institut Jérôme Lejeune, Paris, France.
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Al-Ani RM. Various aspects of hearing loss in newborns: A narrative review. World J Clin Pediatr 2023; 12:86-96. [PMID: 37342452 PMCID: PMC10278076 DOI: 10.5409/wjcp.v12.i3.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Hearing loss is considered the most common birth defect. The estimated prevalence of moderate and severe hearing loss in a normal newborn is 0.1%-0.3%, while the prevalence is 2%-4% in newborns admitted to the newborn intensive care unit. Neonatal hearing loss can be congenital (syndromic or non-syndromic) or acquired such as ototoxicity. In addition, the types of hearing loss can be conductive, sensorineural, or mixed. Hearing is vital for the acquisition of language and learning. Therefore, early detection and prompt treatment are of utmost importance in preventing the unwanted sequel of hearing loss. The hearing screening program is mandatory in many nations, especially for high-risk newborns. An automated auditory brainstem response test is used as a screening tool in newborns admitted to the newborn intensive care unit. Moreover, genetic testing and screening for cytomegalovirus in newborns are essential in identifying the cause of hearing loss, particularly, mild and delayed onset types of hearing loss. We aimed to update the knowledge on the various aspects of hearing loss in newborns with regard to the epidemiology, risk factors, causes, screening program, investigations, and different modalities of treatment.
Collapse
Affiliation(s)
- Raid M Al-Ani
- Department of Surgery/Otolaryngology, University of Anbar, College of Medicine, Ramadi 31001, Anbar, Iraq
| |
Collapse
|
3
|
Belcher R, Virgin F, Duis J, Wootten C. Genetic and Non-genetic Workup for Pediatric Congenital Hearing Loss. Front Pediatr 2021; 9:536730. [PMID: 33829002 PMCID: PMC8020033 DOI: 10.3389/fped.2021.536730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Hearing loss is one of the most common concerns for presentation for a geneticist. Presentation prior to the age of one (congenital hearing loss), profound sensorineural hearing loss (SNHL), and bilateral hearing loss are sensitive and should raise concern for genetic causes of hearing loss and prompt referral for genetic testing. Genetic testing particularly in this instance offers the opportunity for anticipatory guidance including possible course of the hearing loss over time and also connection and evaluation for additional congenital anomalies that may be associated with an underlying syndrome vs. isolated genetic hearing loss.
Collapse
Affiliation(s)
- Ryan Belcher
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Frank Virgin
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Jessica Duis
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Christopher Wootten
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| |
Collapse
|
4
|
Roesch S, Bernardinelli E, Wortmann S, Mayr JA, Bader I, Schweighofer-Zwink G, Rasp G, Dossena S. [Molecular and functional testing in case of hereditary hearing loss associated with the SLC26A4 gene]. Laryngorhinootologie 2020; 99:853-862. [PMID: 33307573 DOI: 10.1055/a-1190-4173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Due to development of molecular techniques at hand, the number of genomic sequence variants detected in patient investigations is rising constantly. The number of potentially involved genes in hereditary hearing loss is rising simultaneously.In this overview, current methods for diagnostic workup on a molecular and functional level for variants of the SLC26A4 gene are described. Based on the description of the physiological function of the resulting protein Pendrin, molecular investigations for interpretation of the function are explained. Based on these investigations, the potential clinical consequences of a variant may be predicted more precisely and simplify routine reporting of a proven genotype and a phenotype, at hand. Finally, subsequent clinical investigations necessary, such as perchlorate discharge test, as well as therapeutic options are discussed.
Collapse
Affiliation(s)
- Sebastian Roesch
- Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Emanuele Bernardinelli
- Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
| | - Saskia Wortmann
- Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Johannes A Mayr
- Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Ingrid Bader
- Division für klinische Genetik, Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Gregor Schweighofer-Zwink
- Universitätsklinik für Nuklearmedizin und Endokrinologie der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Gerd Rasp
- Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Silvia Dossena
- Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
| |
Collapse
|
5
|
Sohal K, Moshy J, Owibingire S, Shuaibu I. Hearing loss in children: A review of literature. JOURNAL OF MEDICAL SCIENCES 2020. [DOI: 10.4103/jmedsci.jmedsci_166_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
D'Aguillo C, Bressler S, Yan D, Mittal R, Fifer R, Blanton SH, Liu X. Genetic screening as an adjunct to universal newborn hearing screening: literature review and implications for non-congenital pre-lingual hearing loss. Int J Audiol 2019; 58:834-850. [PMID: 31264897 DOI: 10.1080/14992027.2019.1632499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Universal newborn hearing screening (UNHS) uses otoacoustic emissions testing (OAE) and auditory brainstem response testing (ABR) to screen all newborn infants for hearing loss (HL), but may not identify infants with mild HL at birth or delayed onset HL. The purpose of this review is to examine the role of genetic screening to diagnose children with pre-lingual HL that is not detected at birth by determining the rate of children who pass UNHS but have a positive genetic screening. This includes a summary of the current UNHS and its limitations and a review of genetic mutations and screening technologies used to detect patients with an increased risk of undiagnosed pre-lingual HL.Design: Literature review of studies that compare UNHS with concurrent genetic screening.Study sample: Infants and children with HLResults: Sixteen studies were included encompassing 137,895 infants. Pathogenic mutations were detected in 8.66% of patients. In total, 545 patients passed the UNHS but had a positive genetic screening. The average percentage of patients who passed UNHS but had a positive genetic screening was 1.4%.Conclusions: This review demonstrates the positive impact of concurrent genetic screening with UNHS to identify patients with pre-lingual HL.
Collapse
Affiliation(s)
- Christine D'Aguillo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Fifer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Tsinghua University School of Medicine, Beijing, PR China
| |
Collapse
|
7
|
Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018; 45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Precision medicine (PM) proposes customized medical care based on a patient's unique genome, biomarkers, environment and behaviors. Hearing loss (HL) is the most common sensorineural disorder worldwide and is frequently caused by a single genetic mutation. With recent advances in PM tools such as genetic sequencing and data analysis, the field of HL is ideally positioned to adopt the strategies of PM. Here, we review current and future applications of PM in HL as they relate to the four core qualities of PM (P4): predictive, personalized, patient-centered, and participatory. We then introduce a strategy for effective incorporation of HL PM into the design of future research studies, electronic medical records, and clinical practice to improve diagnostics, prognostics, and, ultimately, individualized patient treatment. Finally, specific anticipated ethical and economic concerns in this growing era of genomics-based HL treatment are discussed. By integrating PM principles into translational HL research and clinical practice, hearing specialists are uniquely positioned to effectively treat the heterogeneous causes and manifestations of HL on an individualized basis.
Collapse
Affiliation(s)
- Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara E Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Evaluation and management of nonsyndromic congenital hearing loss. Curr Opin Otolaryngol Head Neck Surg 2017; 25:385-389. [DOI: 10.1097/moo.0000000000000398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Ryu N, Lee S, Park HJ, Lee B, Kwon TJ, Bok J, Park CI, Lee KY, Baek JI, Kim UK. Identification of a novel splicing mutation within SLC17A8 in a Korean family with hearing loss by whole-exome sequencing. Gene 2017. [PMID: 28647561 DOI: 10.1016/j.gene.2017.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL.
Collapse
Affiliation(s)
- Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Seokwon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | | | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Ik Park
- Department of Aroma-applied Industry, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Aroma-applied Industry, Daegu Haany University, Gyeongsan, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Pandya A. Genetic hearing loss: the journey of discovery to destination - how close are we to therapy? Mol Genet Genomic Med 2016; 4:583-587. [PMID: 27896280 PMCID: PMC5118202 DOI: 10.1002/mgg3.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arti Pandya
- Division of Genetics and Metabolism Department of Pediatrics University of North Carolina Chapel Hill North Carolina
| |
Collapse
|