1
|
Korkitpoonpol N, Kanjanabuch P. Direct immunofluorescence cannot be used solely to differentiate among oral lichen planus, oral lichenoid lesion, and oral epithelial dysplasia. J Dent Sci 2023; 18:1669-1676. [PMID: 37799909 PMCID: PMC10547942 DOI: 10.1016/j.jds.2023.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/22/2023] [Indexed: 02/10/2023] Open
Abstract
Background/purpose Some red and white lesions may have similar manifestations, making them difficult to be diagnosed. A direct immunofluorescence (DIF) assay can assist in making a final diagnosis of oral lichen planus (OLP). The aim of this study was to evaluate and compare the DIF profile in patients who had the clinical presentations of OLP and were histopathologically diagnosed with OLP, OLL (oral lichenoid lesion), or OED (oral epithelial dysplasia). Materials and methods The data were obtained from the medical records of 136 patients with the clinical presentations of OLP. Demographic information, histopathological diagnosis, malignant transformation, and DIF results were collected and analyzed. Results In this study, 117 patients (86.0%) were DIF-positive, while 19 patients (14.0%) were DIF-negative. The highest DIF-positivity rate was in the OLP group (88.9%) followed by the OLL (83.7%), and the OED groups (81%). There were no significant differences in DIF-positivity rate, type of immunoreactants, location, or interpretation among these groups. Shaggy fibrinogen at the basement membrane zone (BMZ) was the most common DIF pattern in all groups. Conclusion The DIF assay alone cannot be regarded as sufficient evidence for OLP, OLL, and OED differentiation. A histopathological examination is required to determine the presence of epithelial dysplasia or malignancy. To diagnose dysplastic lesions with the clinical manifestations of OLP, careful clinicopathologic correlation is mandatory. Due to the lack of scientific evidence to identify the primary pathology and the ongoing malignancy risk of epithelial dysplasia, meticulous long-term follow-up plays a crucial role in patient management.
Collapse
Affiliation(s)
- Nattanich Korkitpoonpol
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Patnarin Kanjanabuch
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Schuch LF, Schmidt TR, Kirschnick LB, de Arruda JAA, Champagnol D, Martins MAT, Santos-Silva AR, Lopes MA, Vargas PA, Bagnato VS, Kurachi C, Guerra ENS, Martins MD. Revisiting the evidence of photodynamic therapy for oral potentially malignant disorders and oral squamous cell carcinoma: an overview of systematic reviews. Photodiagnosis Photodyn Ther 2023; 42:103531. [PMID: 36963644 DOI: 10.1016/j.pdpdt.2023.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND This study summarized the available evidence about the use of photodynamic therapy (PDT) for the management of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC). METHODS An overview of systematic reviews was undertaken based on the 2020 PRISMA statement. Electronic searches were performed in five databases. Studies published up to November 2022 were included. Risk of bias was assessed with the AMSTAR 2 tool. RESULTS A total of 30 studies enrolling 9,245 individuals with OPMD (n=7,487) or OSCC (n=1,758) met the selection criteria. All studies examined the efficacy and/or safety of PDT. OPMD were investigated individually in 82.8% of the studies, the most common being oral lichen planus and actinic cheilitis. OSCC was addressed separately in 10.3% of the studies, while only 6.9% evaluated both OPMD and OSCC. Fourteen different types of photosensitizers were described. PDT was used according to the following setting parameters: 417-670 nm, 10-500 mW/cm2, 1.5-200 J/cm2, and 0.5-143 minutes. Regarding OPMD, leukoerythroplakia showed the best response rates, while oral lichen planus presented a partial or no response in nearly 75% of documented cases. A complete response was observed in 85.9% of OSCC cases, while 14.1% had no resolution. CONCLUSION Overall, the response to PDT depended on the type of OPMD/OSCC and the parameters used. Although PDT is an emerging candidate for the treatment of OPMD and OSCC, there is heterogeneity of the methodologies used and the clinical data obtained, particularly regarding the follow-up period.
Collapse
Affiliation(s)
- Lauren Frenzel Schuch
- Oral Diagnosis Departament, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - Tuany Rafaeli Schmidt
- Departament of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Laura Borges Kirschnick
- Oral Diagnosis Departament, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - José Alcides Almeida de Arruda
- Departament of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniela Champagnol
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marco Antônio Trevizani Martins
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alan Roger Santos-Silva
- Oral Diagnosis Departament, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - Márcio Ajudarte Lopes
- Oral Diagnosis Departament, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - Pablo Agustin Vargas
- Oral Diagnosis Departament, Piracicaba School of Dentistry, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - Vanderlei Salvador Bagnato
- Department of Physics and Materials Science, São Carlos Institute of Physics, Universidade de São Paulo, São Carlos, São Paulo, Brazil.
| | - Cristina Kurachi
- Department of Physics and Materials Science, São Carlos Institute of Physics, Universidade de São Paulo, São Carlos, São Paulo, Brazil.
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Department of Oral Diagnosis, Piracicaba School of Dentistry, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
3
|
Microenvironment in Oral Potentially Malignant Disorders: Multi-Dimensional Characteristics and Mechanisms of Carcinogenesis. Int J Mol Sci 2022; 23:ijms23168940. [PMID: 36012205 PMCID: PMC9409092 DOI: 10.3390/ijms23168940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 02/07/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are a group of diseases involving the oral mucosa and that have a risk of carcinogenesis. The microenvironment is closely related to carcinogenesis and cancer progression by regulating the immune response, cell metabolic activities, and mechanical characteristics. Meanwhile, there are extensive interactions between the microenvironments that remodel and provide favorable conditions for cancer initiation. However, the changes, exact roles, and interactions of microenvironments during the carcinogenesis of OPMDs have not been fully elucidated. Here, we present an updated landscape of the microenvironments in OPMDs, emphasizing the changes in the immune microenvironment, metabolic microenvironment, mechanical microenvironment, and neural microenvironment during carcinogenesis and their carcinogenic mechanisms. We then propose an immuno–metabolic–mechanical–neural interaction network to describe their close relationships. Lastly, we summarize the therapeutic strategies for targeting microenvironments, and provide an outlook on future research directions and clinical applications. This review depicts a vivid microenvironment landscape and sheds light on new strategies to prevent the carcinogenesis of OPMDs.
Collapse
|
5
|
Saidak Z, Lailler C, Testelin S, Chauffert B, Clatot F, Galmiche A. Contribution of Genomics to the Surgical Management and Study of Oral Cancer. Ann Surg Oncol 2021; 28:5842-5854. [PMID: 33846893 PMCID: PMC8460589 DOI: 10.1245/s10434-021-09904-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most frequent type of tumor arising from the oral cavity. Surgery is the cornerstone of the treatment of these cancers. Tumor biology has long been overlooked as an important contributor to the outcome of surgical procedures, but recent studies are challenging this concept. Molecular analyses of tumor DNA or RNA provide a rich source of information about the biology of OSCC. Methods We searched for relevant articles using PubMed. We examined in particular the prospect of applying molecular methods for minimally invasive exploration of OSCC biology. Results We examined five potential applications of genomics to the surgical management and study of OSCC: i) assessing oral potentially malignant lesions; ii) tumor staging prior to surgery; iii) predicting postoperative risk in locally advanced tumors; iv) measuring minimal residual disease and optimizing the longitudinal monitoring of OSCC; and v) predicting the efficacy of medical treatment. Conclusions Genomic information can be harnessed in order to identify new biomarkers that could improve the staging, choice of therapy and management of OSCC. The identification of new biomarkers is awaited for better personalization of the surgical treatment of OSCC.
Collapse
Affiliation(s)
- Zuzana Saidak
- UR7516 "CHIMERE, Université de Picardie Jules Verne", Amiens, France. .,Centre de Biologie Humaine, CHU Amiens, Amiens, France.
| | - Claire Lailler
- UR7516 "CHIMERE, Université de Picardie Jules Verne", Amiens, France.,Centre de Biologie Humaine, CHU Amiens, Amiens, France
| | - Sylvie Testelin
- UR7516 "CHIMERE, Université de Picardie Jules Verne", Amiens, France.,Department of Maxillofacial Surgery, CHU Amiens, Amiens, France
| | - Bruno Chauffert
- UR7516 "CHIMERE, Université de Picardie Jules Verne", Amiens, France.,Department of Oncology, CHU Amiens, Amiens, France
| | - Florian Clatot
- Centre Henri Becquerel, Rouen, France.,INSERM U1245/Team IRON, Rouen, France
| | - Antoine Galmiche
- UR7516 "CHIMERE, Université de Picardie Jules Verne", Amiens, France.,Centre de Biologie Humaine, CHU Amiens, Amiens, France
| |
Collapse
|