Gao Y, Li C, Wang H, Fan G. Acceleration of bone-defect repair by using A-W MGC loaded with BMP2 and triple point-mutant HIF1α-expressing BMSCs.
J Orthop Surg Res 2015;
10:83. [PMID:
26018771 PMCID:
PMC4450843 DOI:
10.1186/s13018-015-0219-3]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/09/2015] [Indexed: 02/03/2023] Open
Abstract
Background
The goal of this study is to explore the effects of A-W MGC (apatite-wollastonite magnetic bioactive glass-ceramic) loaded with BMP2 (bone morphogenetic protein 2)- and HIF1αmu (hypoxia-inducible factor 1 mutation)-expressing BMSCs (bone marrow mesenchymal stem cells) on the bone defect repair.
Methods
(1) BMSCs were infected with viral solution containing BMP2 and HIF1αmu with the best MOI (multiplicity of infection). The efficiency was observed via hrGFP (human renilla reniformis green fluorescent protein). (2) The cells were divided into five groups (A–E), and ALP (alkaline phosphatase) activity was measured. (3) BMP2 and HIF1α (hypoxia-inducible factor 1α) protein were measured. (4) A-W MGC was loaded with BMSCs that contain the genes and implanted into the bone defect model. The animals were sacrificed 8 and 12 weeks later. (5) The healing was measured with X-ray, histology, and biomechanics.
Results
(1) BMSCs in A–D showed high transfection efficiency. (2) ALP in A and B was higher than the others (p = 0.041 or 0.038); A was higher than B (p = 0.038); (3) BMP2 in A and B was higher than the others (p = 0.014). HIF1α in A and C was higher than the others (p = 0.020). (4) 8 and 12 weeks after, an X-ray indicated that bone defect was nearly fully repaired in A and C. (5) 12 weeks after, the bone remodeling was complete in A and C. (6) The flexural strength in A and C was stronger than the others (p = 0.043).
Conclusion
Engineered A-W MGC with BMP2 and HIF1αmu-expressing BMSCs exhibits comparable therapeutic effects of bone-defect repair as an autologous bone graft.
Collapse