1
|
Descripción de un caso: Hallazgos prenatales del síndrome de Silver-Russell. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2023. [DOI: 10.1016/j.gine.2022.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Novel Variant in PLAG1 in a Familial Case with Silver-Russell Syndrome Suspicion. Genes (Basel) 2020; 11:genes11121461. [PMID: 33291420 PMCID: PMC7762056 DOI: 10.3390/genes11121461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Silver-Russell syndrome (SRS) is a rare growth-related genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Molecular causes are not clear in all cases, the most common ones being loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). However, pathogenic variants in genes such as CDKN1C, HMGA2, IGF2, or PLAG1 have also been described. Previously, two families and one sporadic case have been reported with PLAG1 alterations. Here, we present a case of a female with clinical suspicion of SRS (i.e., intrauterine and postnatal growth retardation, triangular face, psychomotor delay, speech delay, feeding difficulties). No alterations in methylation or copy number were detected at chromosomes 11p15 and 7 using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The custom panel study by next-generation sequencing (NGS) revealed a frameshift variant in the PLAG1 gene (NM_002655.3:c.551delA; p.(Lys184Serfs *45)). Familial studies confirmed that the variant was inherited from the mother and it was also present in other family members. New evidence of pathogenic alterations in the HMGA2-PLAG1-IGF2 pathway suggest the importance of studying and taking into account these genes as alternative molecular causes of Silver-Russell syndrome.
Collapse
|
3
|
Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol 2019; 15:299-311. [PMID: 30842651 DOI: 10.1038/s41574-019-0180-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France.
| | - Annick Toutain
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, INSERM UMR1253, iBrain, Université de Tours, Faculté de Médecine, Tours, France
| | - Eloise Giabicani
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| | - Edouard Cottereau
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, Tours, France
| | - Valérie Cormier-Daire
- Service de génétique clinique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| |
Collapse
|
4
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Vado Y, Errea-Dorronsoro J, Llano-Rivas I, Gorria N, Pereda A, Gener B, Garcia-Naveda L, Perez de Nanclares G. Cri-du-chat syndrome mimics Silver-Russell syndrome depending on the size of the deletion: a case report. BMC Med Genomics 2018; 11:124. [PMID: 30587166 PMCID: PMC6307281 DOI: 10.1186/s12920-018-0441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silver-Russell Syndrome (SRS) is a rare growth-related genetic disorder mainly characterized by prenatal and postnatal growth failure. Although molecular causes are not clear in all cases, the most common mechanisms involved in SRS are loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). CASE PRESENTATION We present a girl with clinical suspicion of SRS (intrauterine and postnatal growth retardation, prominent forehead, triangular face, mild psychomotor delay, transient neonatal hypoglycemia, mild hypotonia and single umbilical artery). Methylation and copy number variations at chromosomes 11 and 7 were studied by methylation-specific multiplex ligation-dependent probe amplification and as no alterations were found, molecular karyotyping was performed. A deletion at 5p15.33p15.2 was identified (arr[GRCh37] 5p15.33p15.2(25942-11644643)× 1), similar to those found in patients with Cri-du-chat Syndrome (CdCS). CdCS is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-), whose main feature is a high-pitched mewing cry in infancy, accompanied by multiple congenital anomalies, intellectual disability, microcephaly and facial dysmorphism. CONCLUSIONS The absence of some CdCS features in the current patient could be due to the fact that in her case the critical regions responsible do not lie within the identified deletion. In fact, a literature review revealed a high degree of concordance between the clinical manifestations of the two syndromes.
Collapse
Affiliation(s)
- Yerai Vado
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba Spain
| | - Javier Errea-Dorronsoro
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| | - Isabel Llano-Rivas
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Nerea Gorria
- Service of Pediatric Neurology, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba Spain
| | - Arrate Pereda
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| | - Blanca Gener
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Laura Garcia-Naveda
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
6
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
7
|
Gillessen-Kaesbach G, Albrecht B, Eggermann T, Elbracht M, Mitter D, Morlot S, van Ravenswaaij-Arts C, Schulz S, Strobl-Wildemann G, Buiting K, Beygo J. Molecular and clinical studies in 8 patients with Temple syndrome. Clin Genet 2018; 93:1179-1188. [DOI: 10.1111/cge.13244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - B. Albrecht
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| | - T. Eggermann
- Institute of Human Genetics; RWTH Aachen University; Aachen Germany
| | - M. Elbracht
- Institute of Human Genetics; RWTH Aachen University; Aachen Germany
| | - D. Mitter
- Institute of Human Genetics
- ; University of Leipzig Hospitals and Clinics; Leipzig Germany
| | - S. Morlot
- Department of Human Genetics; Hannover Medical School; Hannover Germany
| | - C.M.A. van Ravenswaaij-Arts
- Department of Genetics; University of Groningen, University Medical Centre Groningen; Groningen The Netherlands
| | - S. Schulz
- Center of Human Genetics; Jena University Hospital; Jena Germany
| | | | - K. Buiting
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| | - J. Beygo
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| |
Collapse
|
8
|
Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S, Macek M. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet 2018; 26:12-33. [PMID: 29199274 PMCID: PMC5839000 DOI: 10.1038/s41431-017-0016-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
Collapse
Affiliation(s)
- J C Harper
- Institute for Women's Health, University College London, London, UK
| | - K Aittomäki
- Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland
| | - P Borry
- Department of Public Health and Primary Care, Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
| | - M C Cornel
- Department of Clinical Genetics, Section Community Genetics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - G de Wert
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, Maastricht, The Netherlands
| | - W Dondorp
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, Maastricht, The Netherlands
| | - J Geraedts
- Department Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L Gianaroli
- S.I.S.Me.R. Reproductive Medicine Unit, Bologna, Italy
| | | | - I Liebaers
- Center for Medical Genetics, UZ Brussels, Brussels, Belgium
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - K Lundin
- Reproductive Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - H Mertes
- Bioethics Institute Ghent, Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium
| | - M Morris
- Synlab Genetics, Lausanne, Switzerland
| | - G Pennings
- Bioethics Institute Ghent, Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Soini
- Helsinki Biobank, Helsinki University Central Hospital, Helsinki, Finland
| | - A P A van Montfoort
- IVF Laboratory, Department of Obstetrics & Gynaecology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Hospital Duran i Reynals, Barcelona, Spain
- Reproductive Medicine Service of Dexeus Woman Health, Barcelona, Spain
| | - J R Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - S Viville
- Institute of Parasitology and Pathology, University of Strasbourg, Strasbourg, France
- Laboratory of Genetic Diagnostics, UF3472-Genetics of Infertility, Nouvel Hôpital Civil, Strasbourg, France
| | - M Macek
- Department of Biology and Medical Genetics, Charles University-2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
9
|
Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S, Macek M. Recent developments in genetics and medically-assisted reproduction: from research to clinical applications †‡. Hum Reprod Open 2017; 2017:hox015. [PMID: 31486804 PMCID: PMC6276693 DOI: 10.1093/hropen/hox015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively-parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
Collapse
Affiliation(s)
- J C Harper
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - K Aittomäki
- Laboratory of Genetics, Helsinki University Hospital, PO Box 720, FI-00029, Helsinki, Finland
| | - P Borry
- Department of Public Health and Primary Care, Centre for Biomedical Ethics and Law, KU Leuven, Kapucijnenvoer 35 - Box 7001. B-3000, Leuven Belgium
| | - M C Cornel
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - G de Wert
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, De Byeplein 1, 6229 HA Maastricht, The Netherlands
| | - W Dondorp
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, De Byeplein 1, 6229 HA Maastricht, The Netherlands
| | - J Geraedts
- Department Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - L Gianaroli
- S.I.S.Me.R. Reproductive Medicine Unit, Via Mazzini 12, 40138 Bologna, Italy
| | - K Ketterson
- Althea Science, Inc., 3 Regent St #301, Livingston, NJ 07039, USA
| | - I Liebaers
- Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussels, Belgium
| | - K Lundin
- Reproductive Medicine, Sahlgrenska University Hospital, Blå Stråket 6, 413 45, Göteborg, Sweden
| | - H Mertes
- Bioethics Institute Ghent, Department of Philosophy and Moral Science, Ghent University, Belgium
| | - M Morris
- Synlab Genetics, chemin d'Entre-Bois 21, CH-1018, Lausanne, Switzerland
| | - G Pennings
- Bioethics Institute Ghent, Department of Philosophy and Moral Science, Ghent University, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussels, Belgium
| | - S Soini
- Helsinki Biobank, Helsinki University Central Hospital, Haartmaninkatu 3, PO Box 400, 00029 HUS, Helsinki, Finland
| | - A P A van Montfoort
- IVF laboratory, Department of Obstetrics and Gynaecology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Hospital Duran i Reynals, Gran Via de l' Hospitalet 199, 08908, Hospitalet de Llobregat, Barcelona, Spain
- Reproductive Medicine Service of Dexeus Woman Health, Gran Via Carles III, 71-75 - 08028 Barcelona, Spain
| | - J R Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49 - Box 602, B-3000 Leuven, Belgium
| | - S Viville
- Institute of Parasitology and Pathology, University of Strasbourg, 3 rue Koberlé, 67000 Strasbourg, France
- Laboratory of Genetic Diagnostics, UF3472-Genetics of Infertility, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg cedex, France
| | - M Macek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, Prague CZ-15006, Czech Republic
| |
Collapse
|
10
|
Jobic F, Morin G, Vincent-Delorme C, Cadet E, Cabry R, Mathieu-Dramard M, Copin H, Rochette J, Jedraszak G. New intragenic rearrangements in non-Finnish mulibrey nanism. Am J Med Genet A 2017; 173:2782-2788. [DOI: 10.1002/ajmg.a.38381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/19/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Florence Jobic
- Unité de Génétique Clinique; Centre Hospitalier Universitaire d'Amiens; Amiens France
- Laboratoire de Génétique Moléculaire Médicale, EA4666; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | - Gilles Morin
- Unité de Génétique Clinique; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | | | - Estelle Cadet
- Laboratoire de Génétique Moléculaire Médicale, EA4666; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction et Laboratoire de Cytogénétique; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | | | - Henri Copin
- Médecine et Biologie de la Reproduction et Laboratoire de Cytogénétique; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | - Jacques Rochette
- Laboratoire de Génétique Moléculaire Médicale, EA4666; Centre Hospitalier Universitaire d'Amiens; Amiens France
| | - Guillaume Jedraszak
- Médecine et Biologie de la Reproduction et Laboratoire de Cytogénétique; Centre Hospitalier Universitaire d'Amiens; Amiens France
| |
Collapse
|