1
|
Huang H, Gu Q, Nie SM, Wang JD, Zhao H, Zhai BW, Zhang MY, Fu YJ. Untargeted metabolomics reveals the regulatory effect of geniposidic acid on lipid accumulation in HepG2 cells and Caenorhabditis elegans and validation in hyperlipidemic hamsters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155295. [PMID: 38277945 DOI: 10.1016/j.phymed.2023.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Geniposidic acid (GPA) alleviates oxidative stress and inflammation in mice However, whether it can effectively regulate lipid accumulation and prevent hyperlipidemia requires further investigation. PURPOSE This study combined the untargeted metabolomics of cells and a Caenorhabditis elegans model to evaluate the anti-hyperlipidemic potential of GPA by modulating oxidative stress and regulating lipid metabolism. A golden hamster model of hyperlipidemia was used to further validate the lipid-lowering effect and mechanism of action of GPA. METHODS Chemical staining, immunofluorescence, and flow cytometry were performed to examine the effects of GPA on lipid accumulation and oxidative stress. Untargeted metabolomic analysis of cells and C. elegans was performed using ultra-performance liquid chromatography coupled with quadrupole electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap MS) to identify biomarkers altered by GPA action, analyze the affected metabolic pathways, and validate the mechanisms by which GPA regulates lipid metabolism and oxidative stress. A golden hamster model of hyperlipidemia was established to test the lipid-lowering effects of GPA. Body weight, biochemical markers, rate-limiting enzymes, and key proteins were assessed. Hematoxylin and eosin (H&E) and Oil Red O staining were performed. RESULTS Phenotypic data showed that GPA decreased free fatty acid (FFA)-induced lipid buildup and high reactive oxygen species (ROS) levels, reversed the decrease in mitochondrial membrane potential (MMP), and increased the cellular reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio. GPA also reduces high glucose-induced lipid build-up and ROS production in C. elegans. Metabolomic analysis showed that GPA affected purine, lipid, and amino acid metabolism. Moreover, GPA inhibited xanthine oxidase (XOD), glutamate dehydrogenase (GLDH), fatty acid synthase (FAS), phosphorylation of P38 MAPK, and upregulated the expression of SIRT3 and CPT1A protein production to control lipid metabolism and produce antioxidant benefits in cells and golden hamsters. CONCLUSION Current evidence suggests that GPA can effectively regulate lipid metabolism and the oxidative stress response, and has the potential to prevent hyperlipidemia. This study also provided an effective method for evaluating the mechanism of action of GPA.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Mao-Yu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Li Y, Dong P, Dai L, Wang S. Untargeted and Targeted Metabolomics Reveal the Active Peptide of Eupolyphaga sinensis Walker against Hyperlipidemia by Modulating Imbalance in Amino Acid Metabolism. Molecules 2023; 28:7049. [PMID: 37894528 PMCID: PMC10609387 DOI: 10.3390/molecules28207049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The active peptide (APE) of Eupolyphaga sinensis Walker, which is prepared by bioenzymatic digestion, has significant antihyperlipidemic effects in vivo, but its mechanism of action on hyperlipidemia is not clear. Recent studies on amino acid metabolism suggested a possible link between it and hyperlipidemia. In this study, we first characterized the composition of APE using various methods. Then, the therapeutic effects of APE on hyperlipidemic rats were evaluated, including lipid levels, the inflammatory response, and oxidative stress. Finally, the metabolism-regulating mechanisms of APE on hyperlipidemic rats were analyzed using untargeted and targeted metabolomic approaches. The results showed that APE significantly reduced the accumulation of fat, oxidative stress levels, and serum pro-inflammatory cytokine levels. Untargeted metabolomic analysis showed that the mechanism of the hypolipidemic effect of APE was mainly related to tryptophan metabolism, phenylalanine metabolism, arginine biosynthesis, and purine metabolism. Amino-acid-targeted metabolomic analysis showed that significant differences in the levels of eight amino acids occurred after APE treatment. Among them, the expression of tryptophan, alanine, glutamate, threonine, valine, and phenylalanine was upregulated, and that of arginine and proline was downregulated in APE-treated rats. In addition, APE significantly downregulated the mRNA expression of SREBP-1, SREBP-2, and HMGCR. Taking these points together, we hypothesize that APE ameliorates hyperlipidemia by modulating amino acid metabolism in the metabolome of the serum and feces, mediating the SREBP/HMGCR signaling pathway, and reducing oxidative stress and inflammation levels.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China;
| | - Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Macao SAR 999078, China
| | - Long Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China;
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| |
Collapse
|
3
|
Zhang B, Xu Y, Liu J, Wu C, Zhao X, Zhou L, Xie Y. Oral Intake of Inosine 5'-Monophosphate in Mice Promotes the Absorption of Exogenous Fatty Acids and Their Conversion into Triglycerides though Enhancing the Phosphorylation of Adenosine 5'-Monophosphate-Activated Protein Kinase in the Liver, Leading to Lipohyperplasia. Int J Mol Sci 2023; 24:14588. [PMID: 37834038 PMCID: PMC10572334 DOI: 10.3390/ijms241914588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Inosine 5'-monophoaphate (IMP) is a food additive that promotes serious lipohyperplasia in the liver of C57/KsJ-db/db (db/db) mice. Thus, IMP taken orally by healthy mice might also damage their health. To date, how IMP affects health after being taken by healthy animals is still unclear. Therefore, we investigated the health of C57BL/6J mice affected by IMP intake. Our data revealed that C57BL/6J mice administered 255 μM IMP daily via oral gavage for 4 months caused hyperlipidemia and an increase in body fat rate. The expressions of acetyl-CoA carboxylase 1 (ACC1) and phosphorylated acetyl-CoA carboxylase 2 (ACC2) in hepatocytes increased though the administration of IMP, promoting the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). The conversion of acetyl-CoA into triglycerides (TGs) was promoted by ACC1. These TGs were transported from the hepatocytes to avoid the development of non-alcoholic fatty liver disease (NAFLD), causing a deficiency of acetyl-CoA in the liver, and then, the increased phosphorylated ACC2 promoted the cytoplasm fatty acids entering the mitochondria and conversion into acetyl-CoA through the fatty acid β-oxidation pathway, causing a deficiency in fatty acids. Therefore, the liver showed enhanced absorption of exogenous fatty acids, which were converted into TGs, causing lipohyperplasia. In conclusion, an excessive IMP intake promotes metabolic dysfunction in adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Malianwa North Road No. 151, Haidian District, Beijing 100193, China; (B.Z.); (Y.X.); (J.L.); (C.W.); (X.Z.); (L.Z.)
| |
Collapse
|
4
|
Wang H, Shuai P, Deng Y, Yang J, Shi Y, Li D, Yong T, Liu Y, Huang L. A correlation-based feature analysis of physical examination indicators can help predict the overall underlying health status using machine learning. Sci Rep 2022; 12:19626. [PMID: 36379988 PMCID: PMC9666446 DOI: 10.1038/s41598-022-20474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
As a systematic investigation of the correlations between physical examination indicators (PEIs) is lacking, most PEIs are currently independently used for disease warning. This results in the general physical examination having limited diagnostic values. Here, we systematically analyzed the correlations in 221 PEIs between healthy and 34 unhealthy statuses in 803,614 individuals in China. Specifically, the study population included 711,928 healthy participants, 51,341 patients with hypertension, 12,878 patients with diabetes, and 34,997 patients with other unhealthy statuses. We found rich relevance between PEIs in the healthy physical status (7662 significant correlations, 31.5%). However, in the disease conditions, the PEI correlations changed. We focused on the difference in PEIs between healthy and 35 unhealthy physical statuses and found 1239 significant PEI differences, suggesting that they could be candidate disease markers. Finally, we established machine learning algorithms to predict health status using 15-16% of the PEIs through feature extraction, reaching a 66-99% accurate prediction, depending on the physical status. This new reference of the PEI correlation provides rich information for chronic disease diagnosis. The developed machine learning algorithms can fundamentally affect the practice of general physical examinations.
Collapse
Affiliation(s)
- Haixin Wang
- grid.54549.390000 0004 0369 4060Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital, University of Electronic Science and Technology of China, Chengdu, China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, 32 The First Ring Road West 2, Chengdu, 610072 Sichuan China
| | - Ping Shuai
- grid.54549.390000 0004 0369 4060Health Management Center and Physical Examination Center of Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanhui Deng
- grid.54549.390000 0004 0369 4060Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital, University of Electronic Science and Technology of China, Chengdu, China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, 32 The First Ring Road West 2, Chengdu, 610072 Sichuan China
| | - Jiyun Yang
- grid.54549.390000 0004 0369 4060Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Shi
- grid.54549.390000 0004 0369 4060Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongyu Li
- grid.54549.390000 0004 0369 4060Health Management Center and Physical Examination Center of Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yong
- grid.54549.390000 0004 0369 4060Medical Information Center of Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Liu
- grid.54549.390000 0004 0369 4060Health Management Center and Physical Examination Center of Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- grid.54549.390000 0004 0369 4060Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital, University of Electronic Science and Technology of China, Chengdu, China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, 32 The First Ring Road West 2, Chengdu, 610072 Sichuan China
| |
Collapse
|
5
|
Yang Z, Zhao J, Li J, Wang J, Wang W. Genome-wide DNA methylation profiling of high-fat emulsion-induced hyperlipidemia mice intervened by a polysaccharide from Cyclocarya paliurus (Batal) Iljinskaja. Food Chem Toxicol 2021. [DOI: https://doi.org/10.1016/j.fct.2021.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Yang Z, Zhao J, Li J, Wang J, Wang W. Genome-wide DNA methylation profiling of high-fat emulsion-induced hyperlipidemia mice intervened by a polysaccharide from Cyclocarya paliurus (Batal) Iljinskaja. Food Chem Toxicol 2021; 152:112230. [PMID: 33878369 DOI: 10.1016/j.fct.2021.112230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Genome-wide DNA methylation was used to study the lipid-lowering effect of Cyclocarya paliurus (Batal) Iljinskaja polysaccharide (CPP). The objective of this study was to investigate the hypolipidemic effects and the potential underlying mechanisms of action of CPP-2 in high-fat emulsion (HFE)-induced mice. The results showed that CPP-2 reduced the level of genome-wide DNA methylation in the liver of HFE-induced mice, which had a lipid-lowering effect by regulating the AMP-activated protein kinase (AMPK) signaling-, fatty acid metabolism-, fatty acid biosynthesis- and adipocytokine signaling pathways. A series of lipid metabolism genes were screened out by conjoint analysis of the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Hereafter, fatty acid synthase (FAS) and peroxisome proliferators-activated receptor α (PPARα) as target genes were selected to validate the accuracy of the results. The findings demonstrated that CPP-2 might be effective in lowering the lipid content, thereby protecting against HFE-induced hyperlipidemia.
Collapse
Affiliation(s)
- Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jing Zhao
- Guang' an Vocation &Technical College, Guang' an 638000, China
| | - Jing'en Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1086-96. [PMID: 24302289 DOI: 10.1007/s11427-013-4573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023]
Abstract
Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be related to dysregulation of the novel joint pathway of adipocytokine signaling. In addition, this joint pathway may be the common pathway for body weight regulation in complex human diseases related to unhealthy lifestyle.
Collapse
|