1
|
Ben Brahim B, Arenas Hoyos I, Zhang L, Vögelin E, Olariu R, Rieben R. Tacrolimus-loaded Drug Delivery Systems in Vascularized Composite Allotransplantation: Lessons and Opportunities for Local Immunosuppression. Transplantation 2025; 109:142-152. [PMID: 38773862 PMCID: PMC11627328 DOI: 10.1097/tp.0000000000005049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 05/24/2024]
Abstract
Long-term systemic immunosuppression is needed for vascularized composite allotransplantation (VCA). The high rate of acute rejection episodes in the first posttransplant year, the development of chronic rejection, and the adverse effects that come along with this treatment, currently prevent a wider clinical application of VCA. Opportunistic infections and metabolic disturbances are among the most observed side effects in VCA recipients. To overcome these challenges, local immunosuppression using biomaterial-based drug delivery systems (DDS) have been developed. The aim of these systems is to provide high local concentrations of immunosuppressive drugs while reducing their systemic load. This review provides a summary of recently investigated local DDS with different mechanisms of action such as on-demand, ultrasound-sensitive, or continuous drug delivery. In preclinical models, ranging from rodent to porcine and nonhuman primate models, this approach has been shown to reduce systemic tacrolimus (TAC) load and adverse effects, while prolonging graft survival. Localized immunosuppression using biomaterial-based DDS represents an encouraging approach to enhance graft survival and reduce toxic side effects of immunosuppressive drugs in VCA patients. Preclinical models using TAC-releasing DDS have demonstrated high local immunosuppressive effects with a low systemic burden. However, to reduce acute rejection events in translational animal models or in the clinical reality, the use of additional low-dose systemic TAC treatment may be envisaged. Patients may benefit through efficient graft immunosuppression and survival with negligible systemic adverse effects, resulting in better compliance and quality of life.
Collapse
Affiliation(s)
- Bilal Ben Brahim
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Arenas Hoyos
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Lei Zhang
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Esther Vögelin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Radu Olariu
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Song EY, Barrow BE, Cendales LC. Vascular changes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2024; 29:363-367. [PMID: 39492790 DOI: 10.1097/mot.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Allograft vasculopathy in vascularized composite allografts (VCA) remains understudied. This review explores the vascular changes in VCA, focused on recent literature. RECENT FINDINGS Allograft vasculopathy in VCA generally includes progressive concentric myointimal thickening and luminal narrowing of arterial vessels through endothelial deterioration and proliferation of smooth muscle cells. Microvascular changes are also noted, with thrombosis and lumen narrowing in microvessels of the skin even in the absence of large vessel vasculopathy. Histopathologic reports of skin containing VCA rejection document arteriosclerosis in deep vessels that are not always reflected in skin punch biopsies. The first revision of the Banff VCA scoring system 2022 was developed to include vascular changes in VCA. The scoring system for chronic changes and antibody mediated rejection continues to be under development. SUMMARY The study of vascular changes in VCA continues to progress. Important data and advances in experimental and clinical VCA have been reported and continue to take place. Challenges ahead include capture of clinical data that will evolve beyond transient report forms and approaching on the problem of graft failure well grounded in sound scientific methodology.
Collapse
Affiliation(s)
- Ethan Y Song
- Division of Plastic, Oral, and Maxillofacial Surgery
| | | | - Linda C Cendales
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Berkane Y, Cascales JP, Roussakis E, Lellouch AG, Slade J, Bertheuil N, Randolph MA, Cetrulo CL, Evans CL, Uygun K. Continuous oxygen monitoring to enhance ex-vivo organ machine perfusion and reconstructive surgery. Biosens Bioelectron 2024; 262:116549. [PMID: 38971037 DOI: 10.1016/j.bios.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Continuous oxygenation monitoring of machine-perfused organs or transposed autologous tissue is not currently implemented in clinical practice. Oxygenation is a critical parameter that could be used to verify tissue viability and guide corrective interventions, such as perfusion machine parameters or surgical revision. This work presents an innovative technology based on oxygen-sensitive, phosphorescent metalloporphyrin allowing continuous and non-invasive oxygen monitoring of ex-vivo perfused vascularized fasciocutaneous flaps. The method comprises a small, low-energy optical transcutaneous oxygen sensor applied on the flap's skin paddle as well as oxygen sensing devices placed into the tubing. An intermittent perfusion setting was designed to study the response time and accuracy of this technology over a total of 54 perfusion cycles. We further evaluated correlation between the continuous oxygen measurements and gold-standard perfusion viability metrics such as vascular resistance, with good agreement suggesting potential to monitor graft viability at high frequency, opening the possibility to employ feedback control algorithms in the future. This proof-of-concept study opens a range of research and clinical applications in reconstructive surgery and transplantation at a time when perfusion machines undergo rapid clinical adoption with potential to improve outcomes across a variety of surgical procedures and dramatically increase access to transplant medicine.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; Shriners Children's, Boston, 02114, MA, USA; MOBIDIC, UMR1236, INSERM, Rennes University, Rennes, 35000, France
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Julian Slade
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; MOBIDIC, UMR1236, INSERM, Rennes University, Rennes, 35000, France
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA.
| | - Korkut Uygun
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.
| |
Collapse
|
4
|
Rath J, Zhou X, Lee EB, Hanwright P, Amin N, von Guionneau N, Pinni S, Kambarashvili K, Harris TGW, Beck S, Lee WPA, Brandacher G, Tuffaha S. The Effects of Growth Hormone on Nerve Regeneration and Alloimmunity in Vascularized Composite Allotransplantation. Plast Reconstr Surg 2024; 154:123-130. [PMID: 37467112 DOI: 10.1097/prs.0000000000010936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Poor outcomes in functional recovery after upper extremity transplantation are largely attributable to denervation-induced muscle atrophy that occurs during the prolonged period of nerve regeneration. Growth hormone (GH) has well-established trophic effects on neurons, myocytes, and Schwann cells, and represents a promising therapeutic approach to address this challenge. This study sought to confirm the positive effects of GH treatment on nerve regeneration and functional recovery and to evaluate the effects of GH treatment on the immune response in the setting of vascularized composite allotransplantation. METHODS Rats underwent orthotopic forelimb transplantation across a full major histocompatibility complex mismatch and received either porcine-derived growth hormone or no treatment ( n = 18 per group). Functional recovery was measured using electrically stimulated grip strength testing. Animals were monitored for clinical and subclinical signs of rejection. RESULTS Neuromuscular junction reinnervation and grip strength were improved in GH-treated animals ( P = 0.005, P = 0.08, respectively). No statistically significant differences were seen in muscle atrophy, degree of myelination, axon diameter, or axon counts between groups. The rates of clinical and histologic rejection did not differ significantly between groups. CONCLUSIONS The findings alleviate concern for increased risk of transplant rejection during GH therapy and support the translation of GH as a therapeutic method to promote improved functional recovery in upper extremity transplantation. CLINICAL RELEVANCE STATEMENT The authors' findings suggest that growth hormone is a promising therapeutic option to improve motor functional recovery in upper extremity transplantation without increased risk of rejection.
Collapse
Affiliation(s)
- Jennifer Rath
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Xianyu Zhou
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Erica B Lee
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Philip Hanwright
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Neha Amin
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | | | - Sai Pinni
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Keti Kambarashvili
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Thomas G W Harris
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Sarah Beck
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - W P Andrew Lee
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Gerald Brandacher
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| | - Sami Tuffaha
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University
| |
Collapse
|
5
|
Scarabosio A, Surico PL, Tereshenko V, Singh RB, Salati C, Spadea L, Caputo G, Parodi PC, Gagliano C, Winograd JM, Zeppieri M. Whole-eye transplantation: Current challenges and future perspectives. World J Transplant 2024; 14:95009. [PMID: 38947970 PMCID: PMC11212585 DOI: 10.5500/wjt.v14.i2.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Whole-eye transplantation emerges as a frontier in ophthalmology, promising a transformative approach to irreversible blindness. Despite advancements, formidable challenges persist. Preservation of donor eye viability post-enucleation necessitates meticulous surgical techniques to optimize retinal integrity and ganglion cell survival. Overcoming the inhibitory milieu of the central nervous system for successful optic nerve regeneration remains elusive, prompting the exploration of neurotrophic support and immunomodulatory interventions. Immunological tolerance, paramount for graft acceptance, confronts the distinctive immunogenicity of ocular tissues, driving research into targeted immunosuppression strategies. Ethical and legal considerations underscore the necessity for stringent standards and ethical frameworks. Interdisciplinary collaboration and ongoing research endeavors are imperative to navigate these complexities. Biomaterials, stem cell therapies, and precision immunomodulation represent promising avenues in this pursuit. Ultimately, the aim of this review is to critically assess the current landscape of whole-eye transplantation, elucidating the challenges and advancements while delineating future directions for research and clinical practice. Through concerted efforts, whole-eye transplantation stands to revolutionize ophthalmic care, offering hope for restored vision and enhanced quality of life for those afflicted with blindness.
Collapse
Affiliation(s)
- Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Vlad Tereshenko
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Glenda Caputo
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi 95121 Catania, Italy
| | - Jonathan M Winograd
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
6
|
Berkane Y, Filz von Reiterdank I, Tawa P, Charlès L, Goutard M, Dinicu AT, Toner M, Bertheuil N, Mink van der Molen AB, Coert JH, Lellouch AG, Randolph MA, Cetrulo CL, Uygun K. VCA supercooling in a swine partial hindlimb model. Sci Rep 2024; 14:12618. [PMID: 38824189 PMCID: PMC11144209 DOI: 10.1038/s41598-024-63041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Vascularized composite allotransplantations are complex procedures with substantial functional impact on patients. Extended preservation of VCAs is of major importance in advancing this field. It would result in improved donor-recipient matching as well as the potential for ex vivo manipulation with gene and cell therapies. Moreover, it would make logistically feasible immune tolerance induction protocols through mixed chimerism. Supercooling techniques have shown promising results in multi-day liver preservation. It consists of reaching sub-zero temperatures while preventing ice formation within the graft by using various cryoprotective agents. By drastically decreasing the cell metabolism and need for oxygen and nutrients, supercooling allows extended preservation and recovery with lower ischemia-reperfusion injuries. This study is the first to demonstrate the supercooling of a large animal model of VCA. Porcine hindlimbs underwent 48 h of preservation at - 5 °C followed by recovery and normothermic machine perfusion assessment, with no issues in ice formation and favorable levels of injury markers. Our findings provide valuable preliminary results, suggesting a promising future for extended VCA preservation.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Pierre Tawa
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Marion Goutard
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Antonia T Dinicu
- Shriners Children's Boston, Boston, MA, USA
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mehmet Toner
- Shriners Children's Boston, Boston, MA, USA
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Aebele B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, 75006, Paris, France
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Shriners Children's Boston, Boston, MA, USA.
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Goutard M, Tawa P, Berkane Y, Andrews AR, Pendexter CA, de Vries RJ, Pozzo V, Romano G, Lancia HH, Filz von Reiterdank I, Bertheuil N, Rosales IA, How IDAL, Randolph MA, Lellouch AG, Cetrulo CL, Uygun K. Machine Perfusion Enables 24-h Preservation of Vascularized Composite Allografts in a Swine Model of Allotransplantation. Transpl Int 2024; 37:12338. [PMID: 38813393 PMCID: PMC11133529 DOI: 10.3389/ti.2024.12338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
The current gold standard for preserving vascularized composite allografts (VCA) is 4°C static cold storage (SCS), albeit muscle vulnerability to ischemia can be described as early as after 2 h of SCS. Alternatively, machine perfusion (MP) is growing in the world of organ preservation. Herein, we investigated the outcomes of oxygenated acellular subnormothermic machine perfusion (SNMP) for 24-h VCA preservation before allotransplantation in a swine model. Six partial hindlimbs were procured on adult pigs and preserved ex vivo for 24 h with either SNMP (n = 3) or SCS (n = 3) before heterotopic allotransplantation. Recipient animals received immunosuppression and were followed up for 14 days. Clinical monitoring was carried out twice daily, and graft biopsies and blood samples were regularly collected. Two blinded pathologists assessed skin and muscle samples. Overall survival was higher in the SNMP group. Early euthanasia of 2 animals in the SCS group was linked to significant graft degeneration. Analyses of the grafts showed massive muscle degeneration in the SCS group and a normal aspect in the SNMP group 2 weeks after allotransplantation. Therefore, this 24-h SNMP protocol using a modified Steen solution generated better clinical and histological outcomes in allotransplantation when compared to time-matched SCS.
Collapse
Affiliation(s)
- Marion Goutard
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Pierre Tawa
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Yanis Berkane
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Alec R. Andrews
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Casie A. Pendexter
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Reinier J. de Vries
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Pozzo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Golda Romano
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Hyshem H. Lancia
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Irina Filz von Reiterdank
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Ivy A. Rosales
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Ira Doressa Anne L. How
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Mark A. Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Alexandre G. Lellouch
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Curtis L. Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Korkut Uygun
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Waldron OP, El-Mallah JC, Lochan D, Wen C, Landmesser ME, Asgardoon M, Dawes J, Horchler SN, Schlidt K, Agrawal S, Wang Y, Ravnic DJ. Ushering in the era of regenerative surgery. Minerva Surg 2024; 79:166-182. [PMID: 38088753 DOI: 10.23736/s2724-5691.23.10113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Tissue loss, irrespective of etiology, often requires extensive reconstruction. In many instances, the need exceeds what current treatments and technologies modern medicine can offer. Tissue engineering has made immense strides within the past few decades due to advances in biologics, biomaterials, and manufacturing. The convergence of these three domains has created limitless potential for future surgical care. Unfortunately, there still exists a disconnect on how to best implant these 'replacement parts' and care for the patient. It is therefore vital to develop paradigms for the integration of advanced surgical and tissue engineering technologies. This paper explores the convergence between tissue engineering and reconstructive surgery. We will describe the clinical problem of tissue loss, discuss currently available solutions, address limitations, and propose processes for integrating surgery and tissue engineering, thereby ushering in the era of regenerative surgery.
Collapse
Affiliation(s)
- Olivia P Waldron
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica C El-Mallah
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dev Lochan
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Mary E Landmesser
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mohammadhossein Asgardoon
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jazzmyn Dawes
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Summer N Horchler
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Kevin Schlidt
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Shailaja Agrawal
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA -
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Berkane Y, Hayau J, Filz von Reiterdank I, Kharga A, Charlès L, Mink van der Molen AB, Coert JH, Bertheuil N, Randolph MA, Cetrulo CL, Longchamp A, Lellouch AG, Uygun K. Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts. FRONTIERS IN TRANSPLANTATION 2023; 2:1269706. [PMID: 38682043 PMCID: PMC11052586 DOI: 10.3389/frtra.2023.1269706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/01/2024]
Abstract
Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Justine Hayau
- Division of Plastic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anil Kharga
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Abele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Alban Longchamp
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Zhang L, Hoyos IA, Zubler C, Rieben R, Constantinescu M, Olariu R. Challenges and opportunities in vascularized composite allotransplantation of joints: a systematic literature review. Front Immunol 2023; 14:1179195. [PMID: 37275912 PMCID: PMC10235447 DOI: 10.3389/fimmu.2023.1179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background Joint allotransplantation (JA) within the field of vascularized composite allotransplantation (VCA) holds great potential for functional and non-prosthetic reconstruction of severely damaged joints. However, clinical use of JA remains limited due to the immune rejection associated with all forms of allotransplantation. In this study, we aim to provide a comprehensive overview of the current state of JA through a systematic review of clinical, animal, and immunological studies on this topic. Methods We conducted a systematic literature review in accordance with the PRISMA guidelines to identify relevant articles in PubMed, Cochrane Library, and Web of Science databases. The results were analyzed, and potential future prospects were discussed in detail. Results Our review included 14 articles describing relevant developments in JA. Currently, most JA-related research is being performed in small animal models, demonstrating graft survival and functional restoration with short-term immunosuppression. In human patients, only six knee allotransplantations have been performed to date, with all grafts ultimately failing and a maximum graft survival of 56 months. Conclusion Research on joint allotransplantation has been limited over the last 20 years due to the rarity of clinical applications, the complex nature of surgical procedures, and uncertain outcomes stemming from immune rejection. However, the key to overcoming these challenges lies in extending graft survival and minimizing immunosuppressive side effects. With the emergence of new immunosuppressive strategies, the feasibility and clinical potential of vascularized joint allotransplantation warrants further investigation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Plastic and Reconstructive Surgery, Plastic and Reconstructive Surgery Center, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Isabel Arenas Hoyos
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cédric Zubler
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mihai Constantinescu
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Radu Olariu
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation 2023; 107:86-97. [PMID: 36210500 DOI: 10.1097/tp.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplant rejection remains a challenge especially in the field of vascularized composite allotransplantation (VCA). To blunt the alloreactive immune response' stable levels of maintenance immunosupression are required. However' the need for lifelong immunosuppression poses the risk of severe side effects, such as increased risk of infection, metabolic complications, and malignancies. To balance therapeutic efficacy and medication side effects, immunotolerance promoting immune cells (especially regulatory T cells [Treg]) have become of great scientific interest. This approach leverages immune system mechanisms that usually ensure immunotolerance toward self-antigens and prevent autoimmunopathies. Treg can be bioengineered to express a chimeric antigen receptor or a T-cell receptor. Such bioengineered Treg can target specific antigens and thereby reduce unwanted off-target effects. Treg have demonstrated beneficial clinical effects in solid organ transplantation and promising in vivo data in VCAs. In this review, we summarize the functional, phenotypic, and immunometabolic characteristics of Treg and outline recent advancements and current developments regarding Treg in the field of VCA and solid organ transplantation.
Collapse
|
14
|
Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation. J Clin Med 2022; 11:jcm11030833. [PMID: 35160284 PMCID: PMC8837026 DOI: 10.3390/jcm11030833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The role of anti-HLA antibodies in transplant rejection is well-known but the injury associated with non-HLA antibodies is now widely discussed. The aim of our study was to investigate a role of non-HLA antibodies in hand allografts rejection. The study was performed on six patients after hand transplantation. The control group consisted of: 12 kidney transplant recipients and 12 healthy volunteers. The following non-HLA antibodies were tested: antibody against angiotensin II type 1 receptor (AT1R-Ab), antibody against endothelin-1 type-A-receptor (ETAR-Ab), antibody against protease-activated receptor 1 (PAR-1-Ab) and anti-VEGF-A antibody (VEGF-A-Ab). Chosen proinflammatory cytokines (Il-1, IL-6, IFNγ) were used to evaluate the post-transplant humoral response. Laboratory markers of endothelial activation (VEGF, sICAM, vWF) were used to assess potential vasculopathy. The patient with the highest number of acute rejections had both positive non-HLA antibodies: AT1R-Ab and ETAR-Ab. The same patient had the highest VEGF-A-Ab and very high PAR1-Ab. All patients after hand transplantation had high levels of laboratory markers of endothelial activation. The existence of non-HLA antibodies together with multiple acute rejections observed in patient after hand transplantation should stimulate to look for potential role of non-HLA antibodies in humoral injury in vascular composite allotransplantation.
Collapse
|
15
|
Facial Trauma 8 years after a Face Transplantation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3575. [PMID: 34036023 PMCID: PMC8140768 DOI: 10.1097/gox.0000000000003575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Over the past 20 years, vascularized composite allografts (VCAs) have emerged as a realistic option in reconstructive surgery. Long-term follow-up reports indicate that face transplant patients have gained in quality of life and social integration. However, they require close monitoring of their immunosuppressive therapy because they are at high-risk for acute rejection episodes, leading eventually to chronic rejection and allograft loss. Reported acute rejection episodes in VCA recipients occur due to low immunosuppressive therapy (mainly due to lack of patient compliance or decreased doses of immunosuppressants to counter side-effects). Repeated mechanical traumas have recently been shown to trigger acute rejection episodes, especially in hand transplant patients. This article reports our experience of a 10-year follow-up of a 57-year-old face transplant patient and the management of his accidental facial trauma. To our knowledge, our patient is the first to undergo a major trauma on his VCA endangering his graft function and vitality. This report discusses the management of an acute surgical situation in those particular patients, and the challenges that arise to avoid acute rejection of the allograft. Ten years into his face transplant and at 18 months follow-up after his facial trauma, our patient shows great aesthetic and functional outcomes and remains rejection-free; a very encouraging result for all VCA candidates.
Collapse
|
16
|
Win TS, Crisler WJ, Dyring-Andersen B, Lopdrup R, Teague JE, Zhan Q, Barrera V, Ho Sui S, Tasigiorgos S, Murakami N, Chandraker A, Tullius SG, Pomahac B, Riella LV, Clark RA. Immunoregulatory and lipid presentation pathways are upregulated in human face transplant rejection. J Clin Invest 2021; 131:135166. [PMID: 33667197 PMCID: PMC8262560 DOI: 10.1172/jci135166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUNDRejection is the primary barrier to broader implementation of vascularized composite allografts (VCAs), including face and limb transplants. The immunologic pathways activated in face transplant rejection have not been fully characterized.METHODSUsing skin biopsies prospectively collected over 9 years from 7 face transplant patients, we studied rejection by gene expression profiling, histology, immunostaining, and T cell receptor sequencing.RESULTSGrade 1 rejection did not differ significantly from nonrejection, suggesting that it does not represent a pathologic state. In grade 2, there was a balanced upregulation of both proinflammatory T cell activation pathways and antiinflammatory checkpoint and immunomodulatory pathways, with a net result of no tissue injury. In grade 3, IFN-γ-driven inflammation, antigen-presenting cell activation, and infiltration of the skin by proliferative T cells bearing markers of antigen-specific activation and cytotoxicity tipped the balance toward tissue injury. Rejection of VCAs and solid organ transplants had both distinct and common features. VCA rejection was uniquely associated with upregulation of immunoregulatory genes, including SOCS1; induction of lipid antigen-presenting CD1 proteins; and infiltration by T cells predicted to recognize CD1b and CD1c.CONCLUSIONOur findings suggest that the distinct features of VCA rejection reflect the unique immunobiology of skin and that enhancing cutaneous immunoregulatory networks may be a useful strategy in combatting rejection.Trial registrationClinicalTrials.gov NCT01281267.FUNDINGAssistant Secretary of Defense and Health Affairs, through Reconstructive Transplant Research (W81XWH-17-1-0278, W81XWH-16-1-0647, W81XWH-16-1-0689, W81XWH-18-1-0784, W81XWH-1-810798); American Society of Transplantation's Transplantation and Immunology Research Network Fellowship Research Grant; Plastic Surgery Foundation Fellowship from the American Society of Plastic Surgeons; Novo Nordisk Foundation (NNF15OC0014092); Lundbeck Foundation; Aage Bangs Foundation; A.P. Moller Foundation for the Advancement of Medical Science; NIH UL1 RR025758.
Collapse
Affiliation(s)
- Thet Su Win
- Department of Dermatology and
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Rachel Lopdrup
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sotirios Tasigiorgos
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Messner F, Etra JW, Shores JT, Thoburn CJ, Hackl H, Iglesias Lozano M, Fidder SAJ, Guo Y, Kambarashvili K, Alagol K, Kalsi R, Beck SE, Cooney C, Furtmüller GJ, Krapf J, Oh BC, Brandacher G. Noninvasive evaluation of intragraft immune responses in upper extremity transplantation. Transpl Int 2021; 34:894-905. [PMID: 33626223 DOI: 10.1111/tri.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/24/2023]
Abstract
In vascularized composite allotransplantation (VCA), invasive tissue biopsies remain the gold standard in diagnosing rejection carrying significant morbidity. We aimed to show feasibility of tape-stripping for noninvasive immune monitoring in VCA. Tape-stripping was performed on allografts and native skin of upper extremity transplant recipients. Healthy nontransplanted individuals served as controls. The technique was also used in swine on naïve skin in nontransplanted animals, native skin of treated, transplanted swine, nonrejecting VCAs, and rejecting VCAs. Extracted protein was analyzed for differences in cytokine expression using Luminex technology. Significantly decreased levels of INFγ and IL-1Ra were seen between human allograft samples and native skin. In swine, rejecting grafts had increased IL-1Ra compared to naïve and native skin, decreased levels of GM-CSF compared to native skin, and decreased IL-10 compared to nonrejecting grafts. Unsupervised hierarchical clustering revealed rejecting grafts separated from the nonrejecting (P = 0.021). Variable importance in projection scores identified GM-CSF, IL-1Ra, and IL-2 as the most important profiles for group discrimination. Differences in cytokine expression are detectable in human VCA patient native skin and VCA graft skin using a noninvasive tape-stripping method. Swine studies suggest that differences in cytokines between rejecting and nonrejecting grafts are discernable.
Collapse
Affiliation(s)
- Franka Messner
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Joanna W Etra
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Thoburn
- Department of Oncology, The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcos Iglesias Lozano
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel A J Fidder
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yinan Guo
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ketevan Kambarashvili
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kemal Alagol
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richa Kalsi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carisa Cooney
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johanna Krapf
- Department of Plastic and Reconstructive Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Abnormal Nailfold Capillaries in Patients after Hand Transplantation. J Clin Med 2020; 9:jcm9113422. [PMID: 33113869 PMCID: PMC7693261 DOI: 10.3390/jcm9113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development of graft vasculopathy may play a role in the long-term deterioration of hand grafts. The aim of study was to examine the patterns of the nailfold capillaries in hand transplant recipients. METHODS the study was performed on six patients who received hand transplantation. To normalize for the effect of immunosuppression an age- and sex-matched group of 12 patients with active kidney transplant was selected. As an additional control group, 12 healthy volunteers were recruited. Nailfold videocapillaroscopy was performed in all participants. Additionally, serum concentrations of vascular endothelial growth factor (VEGF) were measured. RESULTS Videocapillaroscopic examination of the hand allografts revealed significant abnormalities: including capillary disorganization and microhaemorrhages. The number of capillaries was reduced, the vessels were enlarged and branched. Surprisingly, similar, albeit slightly less pronounced, changes were seen in the nailfolds of healthy hands of the limb transplant recipients. In kidney transplant recipients the capillaroscopic pattern was general normal and comparable to healthy individuals. Moreover, serum concentrations of VEGF in all participants correlated with average capillary diameter in capillaroscopy. CONCLUSIONS in hand transplant recipients advanced microvascular abnormalities are found in nailfold capillaroscopic pattern in both transplanted and own extremities connected with elevated levels of VEGF.
Collapse
|
19
|
Puscz F, Dadras M, Dermietzel A, Jacobsen F, Lehnhardt M, Behr B, Hirsch T, Kueckelhaus M. A chronic rejection model and potential biomarkers for vascularized composite allotransplantation. PLoS One 2020; 15:e0235266. [PMID: 32589662 PMCID: PMC7319338 DOI: 10.1371/journal.pone.0235266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic rejection remains the Achilles heel in vascularized composite allotransplantation. Animal models to specifically study chronic rejection in vascularized composite allotransplantation do not exist so far. However, there are established rat models to study chronic rejection in solid organ transplantation such as allogeneic transplantation between the rat strains Lewis and Fischer344. Thus, we initiated this study to investigate the applicability of hindlimb transplantation between these strains to imitate chronic rejection in vascularized composite allotransplantation and identify potential markers. METHODS Allogeneic hindlimb transplantation were performed between Lewis (recipient) and Fischer344 (donor) rats with either constant immunosuppression or a high dose immunosuppressive bolus only in case of acute skin rejections. Histology, immunohistochemistry, microarray and qPCR analysis were used to detect changes in skin and muscle at postoperative day 100. RESULTS We were able to demonstrate significant intimal proliferation, infiltration of CD68 and CD4 positive cells, up-regulation of inflammatory cytokines and initiation of muscular fibrosis in the chronic rejection group. Microarray analysis and subsequent qPCR identified CXC ligands 9-11 as potential markers of chronic rejection. CONCLUSIONS The Fischer344 to Lewis hindlimb transplantation model may represent a new option to study chronic rejection in vascularized composite allotransplantation in an experimental setting. CXC ligands 9-11 deserve further research to investigate their role as chronic rejection markers.
Collapse
Affiliation(s)
- Flemming Puscz
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Alexander Dermietzel
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Tobias Hirsch
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Maximilian Kueckelhaus
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| |
Collapse
|
20
|
Abstract
: Vascularized composite allotransplantation (VCA) is a relatively new field in reconstructive medicine. Likely a result of the unique tissue composition of these allografts-including skin and often a bone marrow component-the immunology and rejection patterns do not always mimic those of the well-studied solid organ transplantations. While the number and type of VCAs performed is rapidly expanding, there is still much to be discovered and understood in the field. With more patients, new findings and patterns emerge and add to our understanding of VCA. Here, we present a case report of an upper extremity transplant recipient with trauma-induced rejection.
Collapse
|
21
|
Genitourinary vascularized composite allotransplantation: a review of penile transplantation. Curr Opin Organ Transplant 2019; 24:721-725. [DOI: 10.1097/mot.0000000000000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Etra JW, Grzelak MJ, Fidder SA, Kolegraff K, Bonawitz S, Shores J, Oh B, Cooney DS, Beck SE, Brandacher G. A Skin Rejection Grading System for Vascularized Composite Allotransplantation in a Preclinical Large Animal Model. Transplantation 2019; 103:1385-1391. [PMID: 31241555 PMCID: PMC6613727 DOI: 10.1097/tp.0000000000002695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Banff Criteria have been accepted as a system for grading histological rejection in graft skin in human vascularized composite allotransplantation (VCA). Preclinical swine hindlimb transplantation models have an important role in translational studies in VCA. However, unified grading criteria for rejection in swine skin have not yet been established. METHODS Two hundred fourteen swine skin biopsy specimens were reviewed, including 88 native skin biopsies and 126 specimens from the skin component of heterotopic swine hindlimb transplants. Thorough review was performed in a blinded fashion by an expert veterinary pathologist with attention paid to the applicability of the Banff criteria as well as specific histologic characteristics and trends. Clinical and histopathologic rejection scores were then directly compared. RESULTS Two hundred fourteen specimens reviewed showed significant similarities between swine and human skin, as previously published. Notable swine-specific characteristics, including paucicellular infiltration with rare epidermal cell infiltration or necrosis, were accounted for in a proposed grading system that parallels the Banff Criteria. CONCLUSIONS This comprehensive grading system, based on the Banff Classification for skin rejection in VCA, provides a standardized system for more accurate comparison of rejection in preclinical swine VCA models.
Collapse
Affiliation(s)
- Joanna W. Etra
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J. Grzelak
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Samuel A.J. Fidder
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Keli Kolegraff
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven Bonawitz
- Department of Surgery, Cooper Medical School of Rowan University, Camden, NJ
| | - Jaimie Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Byoungchol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Damon S. Cooney
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Burlage LC, Tessier SN, Etra JW, Uygun K, Brandacher G. Advances in machine perfusion, organ preservation, and cryobiology: potential impact on vascularized composite allotransplantation. Curr Opin Organ Transplant 2018; 23:561-567. [PMID: 30080697 PMCID: PMC6449688 DOI: 10.1097/mot.0000000000000567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss novel strategies that allow for extended preservation of vascularized composite allografts and their potential future clinical implications for the field of vascularized composite allotransplantation (VCA). RECENT FINDINGS The current gold standard in tissue preservation - static cold preservation on ice - is insufficient to preserve VCA grafts for more than a few hours. Advancements in the field of VCA regarding matching and allocation, desensitization, and potential tolerance induction are all within reasonable reach to achieve; these are, however, constrained by limited preservation time of VCA grafts. Although machine perfusion holds many advantages over static cold preservation, it currently does not elongate the preservation time. More extreme preservation techniques, such as cryopreservation approaches, are, however, specifically difficult to apply to composite tissues as the susceptibility to ischemia and cryoprotectant agents varies greatly by tissue type. SUMMARY In the current scope of extended preservation protocols, high subzero approaches of VCA grafts will be particularly critical enabling technologies for the implementation of tolerance protocols clinically. Ultimately, advances in both preservation techniques and tolerance induction have the potential to transform the field of VCA and eventually lead to broad applications in reconstructive transplantation.
Collapse
Affiliation(s)
- Laura C. Burlage
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Shannon N. Tessier
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joanna W. Etra
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|