1
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Cheung TS, Giacomini C, Cereda M, Avivar-Valderas A, Capece D, Bertolino GM, delaRosa O, Hicks R, Ciccocioppo R, Franzoso G, Galleu A, Ciccarelli FD, Dazzi F. Apoptosis in mesenchymal stromal cells activates an immunosuppressive secretome predicting clinical response in Crohn's disease. Mol Ther 2023; 31:3531-3544. [PMID: 37805713 PMCID: PMC10727969 DOI: 10.1016/j.ymthe.2023.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
In vivo apoptosis of human mesenchymal stromal cells (MSCs) plays a critical role in delivering immunomodulation. Yet, caspase activity not only mediates the dying process but also death-independent functions that may shape the immunogenicity of apoptotic cells. Therefore, a better characterization of the immunological profile of apoptotic MSCs (ApoMSCs) could shed light on their mechanistic action and therapeutic applications. We analyzed the transcriptomes of MSCs undergoing apoptosis and identified several immunomodulatory factors and chemokines dependent on caspase activation following Fas stimulation. The ApoMSC secretome inhibited human T cell proliferation and activation, and chemoattracted monocytes in vitro. Both immunomodulatory activities were dependent on the cyclooxygenase2 (COX2)/prostaglandin E2 (PGE2) axis. To assess the clinical relevance of ApoMSC signature, we used the peripheral blood mononuclear cells (PBMCs) from a cohort of fistulizing Crohn's disease (CD) patients who had undergone MSC treatment (ADMIRE-CD). Compared with healthy donors, MSCs exposed to patients' PBMCs underwent apoptosis and released PGE2 in a caspase-dependent manner. Both PGE2 and apoptosis were significantly associated with clinical responses to MSCs. Our findings identify a new mechanism whereby caspase activation delivers ApoMSC immunosuppression. Remarkably, such molecular signatures could implicate translational tools for predicting patients' clinical responses to MSC therapy in CD.
Collapse
Affiliation(s)
- Tik Shing Cheung
- School of Cancer and Pharmacological Sciences, King's College London, London, UK
| | - Chiara Giacomini
- School of Cancer and Pharmacological Sciences, King's College London, London, UK; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
| | | | - Daria Capece
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Olga delaRosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | - Ryan Hicks
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK; BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Guido Franzoso
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Antonio Galleu
- School of Cancer and Pharmacological Sciences, King's College London, London, UK
| | - Francesca D Ciccarelli
- School of Cancer and Pharmacological Sciences, King's College London, London, UK; Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
| | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences, King's College London, London, UK; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK; BioPharmaceuticals R&D Cell therapy, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
O'Neill JD, Pinezich MR, Guenthart BA, Vunjak-Novakovic G. Gut bioengineering strategies for regenerative medicine. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1-G11. [PMID: 33174453 PMCID: PMC8112187 DOI: 10.1152/ajpgi.00206.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023]
Abstract
Gastrointestinal disease burden continues to rise in the United States and worldwide. The development of bioengineering strategies to model gut injury or disease and to reestablish functional gut tissue could expand therapeutic options and improve clinical outcomes. Current approaches leverage a rapidly evolving gut bioengineering toolkit aimed at 1) de novo generation of gutlike tissues at multiple scales for microtissue models or implantable grafts and 2) regeneration of functional gut in vivo. Although significant progress has been made in intestinal organoid cultures and engineered tissues, development of predictive in vitro models and effective regenerative therapies remains challenging. In this review, we survey emerging bioengineering tools and recent methodological advances to identify current challenges and future opportunities in gut bioengineering for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- John D O'Neill
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
4
|
Ciccocioppo R, Comoli P, Astori G, Del Bufalo F, Prapa M, Dominici M, Locatelli F. Developing cell therapies as drug products. Br J Pharmacol 2020; 178:262-279. [PMID: 33140850 DOI: 10.1111/bph.15305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Patrizia Comoli
- Cell Factory and Paediatric Haematology/Oncology Unit, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Haematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Meng ZW, Baumgart DC. Darvadstrocel for the treatment of perianal fistulas in Crohn's disease. Expert Rev Gastroenterol Hepatol 2020; 14:405-410. [PMID: 32354239 DOI: 10.1080/17474124.2020.1764349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Perianal fistulizing Crohn's disease is associated with a poor quality of life and current medical and surgical treatment options are limited. Darvadstrocel, composed of mesenchymal stem (stromal) cells (MSC), has recently been approved by the European Medicines Agency (EMA) for the treatment for perianal disease. This drug profile educates the reader with this novel treatment approach. AREAS COVERED A literature search was performed on PubMed with focus on perianal fistulizing Crohn's disease and mesenchymal stem (stromal) cells. This review summarizes evidence of the current standard of care and discusses the mechanism of action, manufacturing, and application and safety of darvadstrocel. EXPERT OPINION Darvadstrocel is a safe and effective therapy for complex perianal fistulizing Crohn's disease.
Collapse
Affiliation(s)
- Zhao Wu Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta , Edmonton, Canada
| | - Daniel C Baumgart
- Division of Gastroenterology, Department of Medicine, University of Alberta , Edmonton, Canada
| |
Collapse
|