1
|
Chen Y, Han B, Guan X, Du G, Sheng B, Tang X, Zhang Q, Xie H, Jiang X, Tan Q, Chen S, Wang J, Chen W, Xiao W. Enteric fungi protect against intestinal ischemia-reperfusion injury via inhibiting the SAA1-GSDMD pathway. J Adv Res 2024; 61:223-237. [PMID: 37717911 PMCID: PMC11258666 DOI: 10.1016/j.jare.2023.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Prophylactic antifungal therapy has been widely used for critical patients, but it has failed to improve patient prognosis and has become a hot topic. This may be related to disruption of fungal homeostasis, but the mechanism of fungi action is not clear. As a common pathway in critical patients, intestinal ischemia-reperfusion (IIR) injury is fatal and regulated by gut microbiota. However, the exact role of enteric fungi in IIR injury remains unclear. OBJECTIVES This is a clinical study that aims to provide new perspectives in clarifying the underlying mechanism of IIR injury and propose potential strategies that could be relevant for the prevention and treatment of IIR injury in the near future. METHODS ITS sequencing was performed to detect the changes in fungi before and after IIR injury. The composition of enteric fungi was altered by pretreatment with single-fungal strains, fluconazole and mannan, respectively. Intestinal morphology and function impairment were evaluated in the IIR injury mouse model. Intestinal epithelial MODE-K cells and macrophage RAW264.7 cells were cultured for in vitro tests. RESULTS Fecal fungi diversity revealed the obvious alteration in IIR patients and mice, accompanied by intestinal epithelial barrier dysfunction. Fungal colonization and mannan supplementation could reverse intestinal morphology and function impairment that were exacerbated by fluconazole via inhibiting the expression of SAA1 from macrophages and decreasing pyroptosis of intestinal epithelial cells. Clodronate liposomes were used to deplete the number of macrophages, and it was demonstrated that the protective effect of mannan was dependent on macrophage involvement. CONCLUSION This finding firstly validates that enteric fungi play a crucial role in IIR injury. Preventive antifungal treatment should consider damaging fungal balance. This study provides a novel clue to clarify the role of enteric fungi in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xu Guan
- Department of Nephrology, Army Medical University, Chongqing, 400037, China
| | - Guangsheng Du
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
| | - Baifa Sheng
- Department of General surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, 610036, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400037, China
| | - Quanchao Zhang
- Department of Nephrology, Army Medical University, Chongqing, 400037, China
| | - Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
| | - Xianhong Jiang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Qianshan Tan
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Wei Chen
- Department of Nosocomial Infection Management, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China.
| |
Collapse
|
2
|
Zorzetti N, Marino IR, Sorrenti S, Navarra GG, D'Andrea V, Lauro A. Small bowel transplant - novel indications and recent progress. Expert Rev Gastroenterol Hepatol 2023; 17:677-690. [PMID: 37264646 DOI: 10.1080/17474124.2023.2221433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Advances in the management of intestinal failure have led to a reduction in the number of intestinal transplants. The number of bowel transplants has been mainly stable even though a slight increase has been observed in the last 5 years. AREAS COVERED Standard indication includes patients with a reasonable life expectancy. Recent progress can be deduced by the increased number of intestine transplants in adults: this is due to the continuous improvement of 1-year graft survival worldwide (without differences in 3- and 5-year) associated with better abdominal wall closure techniques. This review aims to provide an update on new indications and changes in trends of pediatric and adult intestine transplantation. This analysis, which stretches through the past 5 years, is based on a collection of related manuscripts from PubMed. EXPERT COMMENTARY Intestinal transplants should be solely intended for a group of individuals for whom indications for transplantation are clear and both medical and surgical rehabilitations have failed. Nevertheless, many protocols developed over the years have not yet solved the key question represented by the over-immunosuppression. Novel indications and recent progress in the bowel transplant field, minimal yet consistent, represent a pathway to be followed.
Collapse
Affiliation(s)
- Noemi Zorzetti
- General Surgery, Ospedale Civile "A. Costa", Alto Reno Terme, Bologna, Italy
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Vito D'Andrea
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Stringa P, Vecchio Dezillio LE, Talayero P, Serradilla J, Errea A, Machuca M, Papa-Gobbi R, Camps Ortega O, Pucci Molineris M, Lausada N, Andres Moreno AM, Rumbo M, Hernández Oliveros F. Experimental Assessment of Intestinal Damage in Controlled Donation After Circulatory Death for Visceral Transplantation. Transpl Int 2023; 36:10803. [PMID: 36713114 PMCID: PMC9878676 DOI: 10.3389/ti.2023.10803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
There is an urgent need to address the shortage of potential multivisceral grafts in order to reduce the average time in waiting list. Since donation after circulatory death (DCD) has been successfully employed for other solid organs, a thorough evaluation of the use of intestinal grafts from DCD is warranted. Here, we have generated a model of Maastricht III DCD in rodents, focusing on the viability of intestinal and multivisceral grafts at five (DCD5) and twenty (DCD20) minutes of cardiac arrest compared to living and brain death donors. DCD groups exhibited time-dependent damage. DCD20 generated substantial intestinal mucosal injury and decreased number of Goblet cells whereas grafts from DCD5 closely resemble those of brain death and living donors groups in terms intestinal morphology, expression of tight junction proteins and number of Paneth and Globet cells. Upon transplantation, intestines from DCD5 showed increased ischemia/reperfusion damage compared to living donor grafts, however mucosal integrity was recovered 48 h after transplantation. No differences in terms of graft rejection, gene expression and absorptive function between DCD5 and living donor were observed at 7 post-transplant days. Collectively, our results highlight DCD as a possible strategy to increase multivisceral donation and transplantation procedures.
Collapse
Affiliation(s)
- Pablo Stringa
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina,Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Leandro Emmanuel Vecchio Dezillio
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina,Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Javier Serradilla
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Agustina Errea
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Rodrigo Papa-Gobbi
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Onys Camps Ortega
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Melisa Pucci Molineris
- Biochemistry Research Institute of La Plata, School of Medicine, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Natalia Lausada
- Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Ane Miren Andres Moreno
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Martin Rumbo
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández Oliveros
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Executive Operational Committee, ERN TransplantChild, Madrid, Spain,*Correspondence: Francisco Hernández Oliveros,
| |
Collapse
|
5
|
A study of the mechanisms responsible for the action of new immunosuppressants and their effects on rat small intestinal transplantation. Transpl Immunol 2021; 70:101497. [PMID: 34785307 DOI: 10.1016/j.trim.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.
Collapse
|