1
|
Zizzari IG, Di Filippo A, Botticelli A, Strigari L, Pernazza A, Rullo E, Pignataro MG, Ugolini A, Scirocchi F, Di Pietro FR, Rossi E, Gelibter A, Schinzari G, D'Amati G, Rughetti A, Marchetti P, Nuti M, Napoletano C. Circulating CD137+ T Cells Correlate with Improved Response to Anti-PD1 Immunotherapy in Patients with Cancer. Clin Cancer Res 2022; 28:1027-1037. [PMID: 34980602 PMCID: PMC9377756 DOI: 10.1158/1078-0432.ccr-21-2918] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/09/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE CD137 molecule is expressed by activated lymphocytes, and in patients with cancer identifies the tumor-reactive T cells. In solid tumors, high levels of circulating CD137+ T cells are associated with the clinical response and the disease-free status. Here, we examined the role of the CD137+ T cells in the improvement of patients' selection for immunotherapy treatment. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells derived from 109 patients with metastatic cancer (66 patients for the identification cohort and 43 for the validation cohort) were analyzed for the expression of CD3, CD4, CD8, CD137, and PD1 molecules before the beginning of anti-PD1 therapy. Twenty healthy donors were used as control. The soluble form of CD137 (sCD137) was also analyzed. The CD137+ T cell subsets and the sCD137 were correlated with the clinicopathologic characteristics. The distribution of CD137+ T cells was also examined in different tumor settings. RESULTS The percentage of CD137+ T cells was higher in healthy donors and in those patients with a better clinical status (performance status = 0-1, n°metastasis≤2) and these high levels were ascribed to the CD8+CD137+ T cell population. The high frequency of CD137+ and CD8+CD137+ T cells resulted as a prognostic factor of overall survival (OS) and progression-free survival (PFS), respectively, and were confirmed in the validation cohort. High levels of CD3+CD137+PD1+ lymphocytes were associated with a low number of metastasis and longer survival. Instead, the high concentration of the immunosuppressive sCD137 in the serum is associated with a lower PFS and OS. In tumor bed, patients with a complete response showed a high percentage of CD137+ and CD8+ T cells. CONCLUSIONS We propose the CD137+ T subset as an immune biomarker to define the wellness status of the immune system for successful anticancer immunotherapy.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, “S. Orsola-Malpighi” Hospital, Bologna, Italy
| | - Angelina Pernazza
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Emma Rullo
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Alessio Ugolini
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy.,Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Romana Di Pietro
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia D'Amati
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,AOU Policlinico Umberto I, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy.,Corresponding Author: Chiara Napoletano, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, Rome 00161, Italy. Phone: 3906-4997-3025; E-mail:
| |
Collapse
|
2
|
Zhang Z, Huang Q, Yu L, Zhu D, Li Y, Xue Z, Hua Z, Luo X, Song Z, Lu C, Zhao T, Liu Y. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front Immunol 2022; 12:807895. [PMID: 35116035 PMCID: PMC8803638 DOI: 10.3389/fimmu.2021.807895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor immune escape is a critical step in the malignant progression of tumors and one of the major barriers to immunotherapy, making immunotherapy the most promising therapeutic approach against tumors today. Tumor cells evade immune surveillance by altering the structure of their own, or by causing abnormal gene and protein expression, allowing for unrestricted development and invasion. These genetic or epigenetic changes have been linked to microRNAs (miRNAs), which are important determinants of post-transcriptional regulation. Tumor cells perform tumor immune escape by abnormally expressing related miRNAs, which reduce the killing effect of immune cells, disrupt the immune response, and disrupt apoptotic pathways. Consequently, there is a strong trend toward thoroughly investigating the role of miRNAs in tumor immune escape and utilizing them in tumor treatment. However, because of the properties of miRNAs, there is an urgent need for a safe, targeted and easily crossed biofilm vehicle to protect and deliver them in vivo, and exosomes, with their excellent biological properties, have successfully beaten traditional vehicles to provide strong support for miRNA therapy. This review summarizes the multiple roles of miRNAs in tumor immune escape and discusses their potential applications as an anti-tumor therapy. Also, this work proposes exosomes as a new opportunity for miRNA therapy, to provide novel ideas for the development of more effective tumor-fighting therapeutic approaches based on miRNAs.
Collapse
Affiliation(s)
- Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| |
Collapse
|
3
|
Zizzari IG, Napoletano C, Di Filippo A, Botticelli A, Gelibter A, Calabrò F, Rossi E, Schinzari G, Urbano F, Pomati G, Scagnoli S, Rughetti A, Caponnetto S, Marchetti P, Nuti M. Exploratory Pilot Study of Circulating Biomarkers in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092620. [PMID: 32937860 PMCID: PMC7563741 DOI: 10.3390/cancers12092620] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The identification of biomarkers in response to therapeutic treatment is one of the main objectives of personalized oncology. Predictive biomarkers are particularly relevant for oncologists challenged by the busy scenario of possible therapeutic options in mRCC patients, including immunotherapy and TKIs. In fact the activation of the immune system can determine the outcome and success of the different therapeutic strategies. In this study we evaluated changes in the immune system of TKI mRCC-treated patients defining immunological profiles related to response characterized by specific biomarkers. The validation of the proposed immune portrait to an extended number of patients could allow characterization and selection of responsive and non-responsive patients from the beginning of the therapeutic process. Abstract With the introduction of immune checkpoint inhibitors (ICIs) and next-generation vascular endothelial growth factor receptor–tyrosine kinase inhibitors (VEGFR–TKIs), the survival of patients with advanced renal cell carcinoma (RCC) has improved remarkably. However, not all patients have benefited from treatments, and to date, there are still no validated biomarkers that can be included in the therapeutic algorithm. Thus, the identification of predictive biomarkers is necessary to increase the number of responsive patients and to understand the underlying immunity. The clinical outcome of RCC patients is, in fact, associated with immune response. In this exploratory pilot study, we assessed the immune effect of TKI therapy in order to evaluate the immune status of metastatic renal cell carcinoma (mRCC) patients so that we could define a combination of immunological biomarkers relevant to improving patient outcomes. We profiled the circulating levels in 20 mRCC patients of exhausted/activated/regulatory T cell subsets through flow cytometry and of 14 immune checkpoint-related proteins and 20 inflammation cytokines/chemokines using multiplex Luminex assay, both at baseline and during TKI therapy. We identified the CD3+CD8+CD137+ and CD3+CD137+PD1+ T cell populations, as well as seven soluble immune molecules (i.e., IFNγ, sPDL2, sHVEM, sPD1, sGITR, sPDL1, and sCTLA4) associated with the clinical responses of mRCC patients, either modulated by TKI therapy or not. These results suggest an immunological profile of mRCC patients, which will help to improve clinical decision-making for RCC patients in terms of the best combination of strategies, as well as the optimal timing and therapeutic sequence.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
- Correspondence: ; Tel.: +39-064-997-3025
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Fabio Calabrò
- Division of Medical Oncology B, San Camillo Forlanini Hospital Rome, 00149 Rome, Italy;
| | - Ernesto Rossi
- Department of Medical Oncology, Fondazione Policlinico A.Gemelli Rome, 00168 Rome, Italy; (E.R.); (G.S.)
| | - Giovanni Schinzari
- Department of Medical Oncology, Fondazione Policlinico A.Gemelli Rome, 00168 Rome, Italy; (E.R.); (G.S.)
| | - Federica Urbano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Giulia Pomati
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Simone Scagnoli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Salvatore Caponnetto
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Paolo Marchetti
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
- Division of Oncology, Department of Clinical and Molecular Medicine, Ospedale Sant’Andrea, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| |
Collapse
|
4
|
Zhuang Q, Peng B, Wei W, Gong H, Yu M, Yang M, Liu L, Ming Y. The detailed distribution of T cell subpopulations in immune-stable renal allograft recipients: a single center study. PeerJ 2019; 7:e6417. [PMID: 30775184 PMCID: PMC6369828 DOI: 10.7717/peerj.6417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
Background Most renal allograft recipients reach a stable immune state (neither rejection nor infection) after transplantation. However, the detailed distribution of overall T lymphocyte subsets in the peripheral blood of these immune-stable renal transplant recipients remains unclear. We aim to identify differences between this stable immune state and a healthy immune state. Methods In total, 103 recipients underwent renal transplantation from 2012 to 2016 and received regular follow-up in our clinic. A total of 88 of these 103 recipients were enrolled in our study according to the inclusion and exclusion criteria. A total of 47 patients were 1 year post-transplantation, and 41 were 5 years post-transplantation. In addition, 41 healthy volunteers were recruited from our physical examination clinic. Detailed T cell subpopulations from the peripheral blood were assessed via flow cytometry. The parental frequency of each subset was calculated and compared among the diverse groups. Results The demographics and baseline characteristics of every group were analyzed. The frequency of total T cells (CD3+) was decreased in the renal allograft recipients. No difference in the variation of the CD4+, CD8+, and activated (HLA-DR+) T cell subsets was noted among the diverse groups. Regarding T cell receptor (TCR) markers, significant reductions were found in the proportion of γδ T cells and their Vδ2 subset in the renal allograft recipients. The proportions of both CD4+ and CD8+ programmed cell death protein (PD) 1+ T cell subsets were increased in the renal allograft recipients. The CD27+CD28+ T cell proportions in both the CD4+ and CD8+ populations were significantly decreased in the allograft recipients, but the opposite results were found for both CD4+ and CD8+ CD27-CD28- T cells. An increased percentage of CD4+ effector memory T cells and a declined fraction of CD8+ central memory T cells were found in the renal allograft recipients. Conclusion Limited differences in general T cell subsets (CD4+, CD8+, and HLA-DR+) were noted. However, obvious differences between renal allograft recipients and healthy volunteers were identified with TCR, PD1, costimulatory molecules, and memory T cell markers.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bo Peng
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wei
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hang Gong
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng Yu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lian Liu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Chen ZH, Wang C, Wei FX, Xu BB, Liu J, Pu Y, Zhang SL, Jiang PC. Adenovirus-mediated OX40Ig gene transfer induces long-term survival of orthotopic liver allograft in rats. Transpl Immunol 2018; 48:32-38. [DOI: 10.1016/j.trim.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/02/2023]
|
6
|
Prevention of allograft rejection in heart transplantation through concurrent gene silencing of TLR and Kinase signaling pathways. Sci Rep 2016; 6:33869. [PMID: 27659428 PMCID: PMC5034230 DOI: 10.1038/srep33869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) act as initiators and conductors responsible for both innate and adaptive immune responses in organ transplantation. The mammalian target of rapamycin (mTOR) is one of the most critical signaling kinases that affects broad aspects of cellular functions including metabolism, growth, and survival. Recipients (BALB/c) were treated with MyD88, TRIF and mTOR siRNA vectors, 3 and 7 days prior to heart transplantation and 7, 14 and 21 days after transplantation. After siRNA treatment, recipients received a fully MHC-mismatched C57BL/6 heart. Treatment with mTOR siRNA significantly prolonged allograft survival in heart transplantation. Moreover, the combination of mTOR siRNA with MyD88 and TRIF siRNA further extended the allograft survival; Flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40, CD86 expression, upregulation of PD-L1 expression in splenic dendritic cells in MyD88, TRIF and mTOR treated mice. There is significantly upregulated T cell exhaustion in T cells isolated from tolerant recipients. This study is the first demonstration of preventing immune rejection of allogeneic heart grafts through concurrent gene silencing of TLR and kinase signaling pathways, highlighting the therapeutic potential of siRNA in clinical transplantation.
Collapse
|
7
|
Chauhan AK, Moore TL, Bi Y, Chen C. FcγRIIIa-Syk Co-signal Modulates CD4+ T-cell Response and Up-regulates Toll-like Receptor (TLR) Expression. J Biol Chem 2015; 291:1368-86. [PMID: 26582197 DOI: 10.1074/jbc.m115.684795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
CD4(+) T-cells in systemic lupus erythematosus (SLE) patients show altered T-cell receptor signaling, which utilizes Fc-receptor γ-chain FcRγ-Syk. A role for FcγRIIIa activation from immune complex (IC) ligation and sublytic terminal complement complex (C5b-9) in CD4(+) T-cell responses is not investigated. In this study, we show that the ICs present in SLE patients by ligating to FcγRIIIa on CD4(+) T-cells phosphorylate Syk and provide a co-stimulatory signal to CD4(+) T-cells in the absence of CD28 signal. This led to the development of pathogenic IL-17A(+) and IFN-γ(high) CD4(+) T-cells in vitro. Cytokines IL-1β, IL-6, TGF-β1, and IL-23 were the only requirement for the development of both populations. SLE patients CD4(+) T-cells that expressed CD25, CD69, and CD98 bound to ICs showed pSyk and produced IFN-γ and IL-17A. This FcγRIIIa-mediated co-signal differentially up-regulated the expression of IFN pathway genes compared with CD28 co-signal. FcγRIIIa-pSyk up-regulated several toll-like receptor genes as well as the HMGB1 and MyD88 gene transcripts. ICs co-localized with these toll-like receptor pathway proteins. These results suggest a role for the FcγRIIIa-pSyk signal in modulating adaptive immune responses.
Collapse
Affiliation(s)
- Anil K Chauhan
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Terry L Moore
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Ye Bi
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Chen Chen
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
8
|
Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014; 47:122-9. [PMID: 24499671 PMCID: PMC4163883 DOI: 10.5483/bmbrep.2014.47.3.283] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Although considerable progress has been made in understanding how tumors evade immune surveillance, measures to counter the same have not kept pace with the advances made in designing effective strategies. 4-1BB (CD137; TNFRS9), an activation-induced costimulatory molecule, is an important regulator of immune responses. Targeting 4-1BB or its natural ligand 4-1BB ligand (4-1BBL) has important implications in many clinical conditions, including cancer. In-depth analysis revealed that 4-1BB-mediated anti-cancer effects are based on its ability to induce activation of cytotoxic T lymphocytes (CTL), and among others, high amounts of IFN-γ. In this review, we will discuss the various aspects of 4-1BB-mediated anti-tumor responses, the basis of such responses, and future directions. [BMB Reports 2014; 47(3): 122-129]
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA; Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
9
|
Wu T, Zhang L, Xu K, Sun C, Lei T, Peng J, Liu G, Wang R, Zhao Y. Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol 2012; 27:30-8. [PMID: 22613676 DOI: 10.1016/j.trim.2012.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
A variety of immunosuppressive drugs are currently used in patients with allo-grafts or autoimmune diseases. Though the effects of rapamycin (RPM) and other immunosuppressant on the CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) were studied, their impact on Ag-specific Tregs during immune response was not well defined. In our studies, we adoptively transferred TCR-transgenic CD4(+)KJ1-26(+) T cells, CD4(+)KJ1-26(+)CD25(-) naïve T cells or CD4(+)KJ1-26(+)CD25(+) Tregs into syngeneic BALB/c mice. 24h later, we treated the recipients with OVA immunization and immunosuppressant including rapamycin (RPM), fingolimod (FTY720), cyclosporin A (CsA), mycophenolate mofetil (MMF), leflunomide (LEF), cyclophosphamide (Cy) or none, respectively. The levels and function of CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs in draining lymph nodes (dLNs) and spleens were determined at different time points. Significantly higher percentage and cell number of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs were observed in OVA immunized mice treated with RPM or FTY720 compared with mice that received OVA immunization alone. Furthermore, RPM augmented the population of functional iTregs in dLNs and spleens whereas inhibited nTregs during immune response. In contrast to RPM and FTY720, MMF, LEF, CsA, and Cy markedly decreased the levels of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs during immune response. Thus, different immunosuppressive drugs have distinct effects on the Ag-specific CD4(+)CD25(+)Foxp3(+) Tregs during immune response. The stronger inhibiting effects of MMF, LEF, CsA and Cy on CD4(+)CD25(+)Foxp3(+) Tregs than on T effectors may block the host immune tolerance potentiality.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gommerman JL, Summers deLuca L. LTβR and CD40: working together in dendritic cells to optimize immune responses. Immunol Rev 2012; 244:85-98. [PMID: 22017433 DOI: 10.1111/j.1600-065x.2011.01056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Generating an immune response tailored to destroy an infecting organism while limiting bystander damage involves guiding T-cell activation using a variety of cues taken from the immunogen (antigen type, dose, and persistence, accompanying danger signals) as well as the host (tissue environment, T-cell frequency, and affinity for antigen). Dendritic cells (DCs) serve as translators of much of this information and are critically required for effective pathogen and tumor clearance. Moreover, dysregulation of DC activation can lead to autoimmunity. Inhibition of the lymphotoxin (LT) and CD40 pathways has been shown to be effective at quieting inflammation in settings where DC-T-cell interactions are key instigators of disease progression. In this review, we compare and contrast the CD40 and LT pathways in the context of receptor/ligand expression, signal transduction, and DC biology. We provide evidence that these two pathways play complementary roles in DC cytokine secretion, thus indirectly shaping the nature of the CD8(+) T-cell response to foreign antigen. Given the distinct role of these pathways in the context of DC function, we propose that dual therapies targeted at both the CD40 and LTβ receptor may have therapeutic potential in silencing DC-driven autoimmunity or in promoting tumor clearance.
Collapse
|
11
|
Li S, Zhang M, Xiang F, Zhao J, Jiang C, Zhu J. Dendritic cells expressing BTLA induces CD8+ T cell tolerance and attenuates the severity of diabetes. Vaccine 2011; 29:7747-51. [PMID: 21827810 DOI: 10.1016/j.vaccine.2011.07.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/03/2023]
Abstract
Numerous evidence demonstrate Type 1 diabetes (T1D) is due to a loss of immune tolerance to islet antigens, and CD8(+) T cells play an important role in the development of T1D in NOD mice. The novel coinhibitory receptor BTLA may have a regulatory role in maintaining peripheral tolerance, however, its role in autoimmune diabetes is unknown. To explore whether the generation of tolerance aiming at BTLA will help therapeutic intervention in T1D, the NOD mice were treated with genetically modified dendritic cells (DCs) expressing BTLA. The results demonstrated that transfer of modified DCs significantly induced CD8(+) T cell tolerance and attenuated the severity of diabetes. The findings suggest that genetically modified DC therapies enhancing the BTLA negative cosignal may prove valuable in treating T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Shufa Li
- Endocrinology Division, The First Municipal Hospital of Guiyang City, Guiyang 550002, China.
| | | | | | | | | | | |
Collapse
|
12
|
Chittasupho C, Siahaan TJ, Vines CM, Berkland C. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Ther Deliv 2011; 2:873-89. [PMID: 21984960 PMCID: PMC3186944 DOI: 10.4155/tde.11.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
- Department of Pharmaceutical Technology, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
| | - Charlotte M Vines
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, KS, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
- Department of Pharmaceutical Chemistry, Department of Chemical & Petroleum Engineering, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
13
|
Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev 2011; 241:180-205. [PMID: 21488898 PMCID: PMC3077803 DOI: 10.1111/j.1600-065x.2011.01011.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
14
|
Peters JH, Koenen HJPM, Hilbrands LB, Joosten I. Immunotherapy with regulatory T cells in transplantation. Immunotherapy 2011; 1:855-71. [PMID: 20636028 DOI: 10.2217/imt.09.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cell (Treg)-based immunotherapy is of great interest to induce tolerance in clinical transplantation settings. In fact, the first clinical trials of Treg infusion after stem cell transplantation have recently begun. However, many important issues regarding human Treg immunotherapy are still to be resolved. In this review, we provide a short update on Tregs and elaborate on various strategies for Treg-based immunotherapy. First, infusion of ex vivo-selected naturally occurring Tregs is addressed, with emphasis on Treg isolation, expansion, antigen specificity, homing and stability. Next, the potential of ex vivo-induced Treg transfusion strategies is discussed. Finally, therapies aimed at in vivo increase of Treg numbers or function are addressed. In addition, we summarize the current knowledge on effects of immunosuppressive drugs on Tregs. In the following years, we expect exciting new data regarding the clinical application of Treg immunotherapy in transplantation to be released.
Collapse
Affiliation(s)
- Jorieke H Peters
- Department of Blood Transfusion & Transplantation Immunology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Yamaura K, Boenisch O, Watanabe T, Ueno T, Vanguri V, Yang J, Tanaka K, Guleria I, Borst J, Zhai Y, Kupiec-Weglinski JW, Najafian N. Differential requirement of CD27 costimulatory signaling for naïve versus alloantigen-primed effector/memory CD8+ T cells. Am J Transplant 2010; 10:1210-20. [PMID: 20353477 PMCID: PMC2889922 DOI: 10.1111/j.1600-6143.2010.03089.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD8(+) memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T-cell costimulatory pathway in alloreactive CD8(+)/CD4(+) T-cell activation. CD27-deficient (CD27(-/-)) and wild-type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4(+) or CD8(+) T cells, suggesting that CD27 is not essential during primary T-cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27(-/-) or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor-type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40- but not day 10-sensitized CD27(-/-) recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8(+) T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27(-/-) recipients of class I- but not class II-mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8(+) memory T cells in acute and chronic allograft rejection.
Collapse
Affiliation(s)
- K. Yamaura
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - O. Boenisch
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - T. Watanabe
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - T. Ueno
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - V. Vanguri
- Immunology Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - J. Yang
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - K. Tanaka
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - I. Guleria
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA
| | - J. Borst
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y. Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - J. W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - N. Najafian
- Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA,Corresponding author: Nader Najafian,
| |
Collapse
|
16
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1078] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 2009; 229:41-66. [PMID: 19426214 PMCID: PMC2714548 DOI: 10.1111/j.1600-065x.2009.00775.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY Costimulation is a concept that goes back to the early 1980s when Lafferty and others hypothesized that cell surface and soluble molecules must exist that are essential for initiating immune responses subsequent to antigen exposure. The explosion in this field of research ensued as over a dozen molecules have been identified to function as second signals following T-cell receptor engagement. By 1994, it seemed clear that the most prominent costimulatory pathway CD28 and functionally related costimulatory molecules, such as CD154, were the major drivers of a positive immune response. Then the immunology world turned upside down. CD28 knockout mice, which were, in most cases, immunodeficient, led to increased autoimmunity when bred into the non-obese diabetic background. Another CD28 family member, cytotoxic T-lymphocyte-associated protein 4, which was presumed to be a costimulatory molecule on activated T cells, turned out to be critical in downregulating immunity. These results, coupled with the vast suppressor cell literature which had been largely rebuked, suggested that the immune system was not poised for response but controlled in such a way that regulation was dominant. Over the last decade, we have learned that these costimulatory molecules play a key role in the now classical CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) that provide critical control of unwanted autoimmune responses. In this review, we discuss the connections between costimulation and Tregs that have changed the costimulation paradigm.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA USA
| | - Jeffrey A. Bluestone
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA USA
| |
Collapse
|