1
|
|
2
|
Filipec Kanizaj T, Kunac N. Hepatitis C: New challenges in liver transplantation. World J Gastroenterol 2015; 21:5768-77. [PMID: 26019441 PMCID: PMC4438011 DOI: 10.3748/wjg.v21.i19.5768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/28/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
In an era of great achievements in liver transplantation, hepatitis C viral infection (HCV) remains an unsolved problem. As a leading indication for liver transplantation in Western countries, HCV poses a significant burden both before and after transplantation. Post-transplant disease recurrence occurs in nearly all patients with detectable pretransplant viremia, compromising the lifesaving significance of transplantation. Many factors involving the donor, recipient and virus have been evaluated throughout the literature, although few have been fully elucidated and implemented in actual clinical practice. Antiviral therapy has been recognized as a cornerstone of HCV infection control; however, experience and success are diminished following transplantation in a challenging cohort of patients with liver cirrhosis. Current therapeutic protocols surpass those used previously, both in sustained viral response and side-effect profile. In this article we review the most relevant and contemporary scientific evidence regarding hepatitis C infection and liver transplantation, with special attention dedicated to novel, more efficient and safer antiviral regimens.
Collapse
|
3
|
Fagiuoli S, Ravasio R, Lucà MG, Baldan A, Pecere S, Vitale A, Pasulo L. Management of hepatitis C infection before and after liver transplantation. World J Gastroenterol 2015; 21:4447-56. [PMID: 25914454 PMCID: PMC4402292 DOI: 10.3748/wjg.v21.i15.4447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/11/2015] [Accepted: 03/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C (CHC) is the most common indication for liver transplantation (LT). Aggressive treatment of hepatitis C virus (HCV) infection before cirrhosis development or decompensation may reduce LT need and risk of HCV recurrence post-LT. Factors associated with increased HCV risk or severity of recurrence include older age, immunosuppression, HCV genotype 1 and high viral load at LT. HCV recurrence post-LT leads to accelerated liver disease and cirrhosis development with reduced graft and patient survival. Currently, interferon (IFN)-based regimens can be used in dual-agent regimens with ribavirin, in triple-agent antiviral strategies with direct-acting antivirals (e.g., protease inhibitors telaprevir or boceprevir), or before transplant in compensated patients to reduce HCV viral load to prevent or reduce the risk of post-LT recurrence and complications; they cannot be used in patients with decompensated cirrhosis. IFN-based regimens are used in less than half of HCV-infected patients waiting for LT due to extremely low efficacy and poor tolerability. However, antiviral therapy is indicated after LT in patients with histologically confirmed CHC despite tolerability issues. Improvements in side effect management have increased survival in patients achieving therapeutic targets. HCV treatment pre- and post-LT results in significant health care costs especially when lack of efficacy leads to disease worsening, although studies have shown sofosbuvir treatment before LT vs conventional post-LT dual antiviral is cost effective. The suboptimal efficacy and tolerability of IFN-based therapies, plus the significant economic burden, means the need for effective and well tolerated IFN-free anti-HCV therapy for pre- and post-LT remains high.
Collapse
|
4
|
Herzer K, Gerken G. Hepatitis C virus reinfection after liver transplant: New chances and new challenges in the era of direct-acting antiviral agents. World J Hepatol 2015; 7:532-538. [PMID: 25848476 PMCID: PMC4381175 DOI: 10.4254/wjh.v7.i3.532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
The first interferon-free regimens have been approved for the treatment of patients with chronic hepatitis C virus (HCV). In the liver transplant (LT) setting, these regimens are expected to have an important effect, because graft loss due to HCV recurrence is a serious problem after LT. The response to the hitherto conventional treatment with pegylated interferon and ribavirin is poor. The significantly better response rates achieved with boceprevir-based and telaprevir-based triple therapy have led to better graft and patient survival rates, but severe drug interactions with immunosuppressants limit the feasibility of this therapy for LT patients. With the approval of sofosbuvir in January 2014, of simeprevir in May 2014, and of daclatasvir in August 2014, three antiviral agents are now available and promise to be applicable without relevant adverse effects or negative interactions with immunosuppressants. Thus, 2014 marks the beginning of a new era of treatment options for HCV recurrence after LT. Although safety and efficacy studies of several interferon-free regimens for patients with HCV recurrence after LT have achieved good preliminary results, reports of clinical experiences with LT patients are scarce. The lack of randomized studies, the small number of enrolled and carefully selected patients, and the heterogeneity of these studies make the results questionable. Real-life experiences are eagerly awaited so that clinicians can estimate the usefulness and the pitfalls of these new regimens. Additionally, the high costs of these agents may limit their accessibility for many patients. The aim of this review is to summarize the current experience with and the expectations of the new direct-acting antiviral agents for LT patients.
Collapse
|
5
|
Hamed MR, Brown RJ, Zothner C, Urbanowicz RA, Mason CP, Krarup A, McClure CP, Irving WL, Ball JK, Harris M, Hickling TP, Tarr AW. Recombinant human L-ficolin directly neutralizes hepatitis C virus entry. J Innate Immun 2014; 6:676-84. [PMID: 24854201 PMCID: PMC6741592 DOI: 10.1159/000362209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/16/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
L-ficolin is a soluble pattern recognition molecule expressed by the liver that contributes to innate immune defense against microorganisms. It is well described that binding of L-ficolin to specific pathogen-associated molecular patterns activates the lectin complement pathway, resulting in opsonization and lysis of pathogens. In this study, we demonstrated that in addition to this indirect effect, L-ficolin has a direct neutralizing effect against hepatitis C virus (HCV) entry. Specific, dose-dependent binding of recombinant L-ficolin to HCV glycoproteins E1 and E2 was observed. This interaction was inhibited by soluble L-ficolin ligands. Interaction of L-ficolin with E1 and E2 potently inhibited entry of retroviral pseudoparticles bearing these glycoproteins. L-ficolin also inhibited entry of cell-cultured HCV in a calcium-dependent manner. Neutralizing concentrations of L-ficolin were found to be circulating in the serum of HCV-infected individuals. This is the first description of direct neutralization of HCV entry by a ficolin and highlights a novel role for L-ficolin as a virus entry inhibitor.
Collapse
Affiliation(s)
- Mohamed R. Hamed
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard J.P. Brown
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard A. Urbanowicz
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Anders Krarup
- Biochemistry Department, University of Oxford, Oxford, UK
| | - C. Patrick McClure
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - William L. Irving
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Timothy P. Hickling
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|