1
|
Marzban H, Pedram N, Amini P, Gholampour Y, Saranjam N, Moradi S, Rahvarian J. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol Biol Rep 2023; 50:9559-9573. [PMID: 37776412 DOI: 10.1007/s11033-023-08768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.
Collapse
Affiliation(s)
- Havva Marzban
- Department of Immunology, Mayo Clinic, Scottsdale, US.
| | - Nastaran Pedram
- Faculty of Veterinary Medicine, Department of Clinical Science, Shiraz University, Shiraz, Iran
| | - Parnian Amini
- Department of Veterinary Laboratory Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - Yasaman Gholampour
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Razi University, Kermanshah, Iran
| | | | - Samira Moradi
- Faculty of Medical Science, Department of Medicine, Hormozgan University, Bandar Abbas, Iran
| | - Jeiran Rahvarian
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Guo R, Wang L, Bai S, Kang D, Zhang W, Ding Z, Xing T, Hao M, Liang Y, Jiao B, Zhang G, Ying L, Chen R, Chen X, Zhang W, Wang J, Wan C, Yu C, Wang H, Yang Z. Specific subsets of urothelial bladder carcinoma infiltrating T cells associated with poor prognosis. Sci Rep 2023; 13:12801. [PMID: 37550396 PMCID: PMC10406853 DOI: 10.1038/s41598-023-39208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Comprehensive investigation of tumor-infiltrating lymphocytes in cancer is crucial to explore the effective immunotherapies, but the composition of infiltrating T cells in urothelial bladder carcinoma (UBC) remains elusive. Here, single-cell RNA sequencing (scRNA-seq) were performed on total 30,905 T cells derived from peripheral blood, adjacent normal and tumor tissues from two UBC patients. We identified 18 distinct T cell subsets based on molecular profiles and functional properties. Specifically, exhausted T (TEx) cells, exhausted NKT (NKTEx) cells, Ki67+ T cells and B cell-like T (B-T) cells were exclusively enriched in UBC. Additionally, the gene signatures of TEx, NKTEx, Ki67+ T and B-T cells were significantly associated with poor survival in patients with BC and various tumor types. Finally, IKZF3 and TRGC2 are the potential biomarkers of TEx cells. Overall, our study demonstrated an exhausted context of T cells in UBC, which layed a theoretical foundation for the development of effective tumor immunotherapies.
Collapse
Affiliation(s)
- Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, 843300, Xinjiang, China
| | - Luyao Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suhang Bai
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danyue Kang
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Wei Zhang
- Department of Urology, The Affiliated Hospital of Hebei University, Baoding, 071030, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binbin Jiao
- Department of Urology, The Affiliated Hospital of Hebei University, Baoding, 071030, China
| | - Guan Zhang
- Department of Urology, The Affiliated Hospital of Hebei University, Baoding, 071030, China
| | - Lu Ying
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, 843300, Xinjiang, China
| | - Ruolan Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenjing Zhang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiansong Wang
- Department of Urology, The Second Affliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chuanxing Wan
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haifeng Wang
- Department of Urology, The Second Affliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, 843300, Xinjiang, China.
| |
Collapse
|
3
|
Zhu L, Liu X, Zhang W, Hu H, Wang Q, Xu K. MTHFD2 is a potential oncogene for its strong association with poor prognosis and high level of immune infiltrates in urothelial carcinomas of bladder. BMC Cancer 2022; 22:556. [PMID: 35581573 PMCID: PMC9112551 DOI: 10.1186/s12885-022-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The bifunctional methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2) has been reported to play an oncogenic role in various types of cancers. However, the function of MTHFD2 in urothelial carcinomas of bladder (UCB) and its association with tumor immune infiltration remains unknown. We aim to examine the suitability of MTHFD2 to be a novel biomarker of bladder cancer and whether MTHFD2 is linked to immune infiltration. METHODS RNA sequencing data and clinical information (bladder cancer samples: normal samples = 414: 19) were downloaded from The Cancer Genome Atlas official website. Western blot analysis was performed to detect MTHFD2 expression in human bladder cancer (BLCA) cells and normal urothelial cell line SV-HUC-1. Associations between MTHFD2 expression and clinicopathological features were analyzed using Mann Whitney U test or Kruskal-Wallis H test. The "survival" and "survminer" packages were utilized to plot Kaplan-Meier survival curves. Moreover, the gene set enrichment analysis (GSEA) was conducted using a clusterProfiler package. The correlation of MTHFD2 expression with immune infiltration level was estimated using the single sample GSEA (ssGSEA) algorithm. Furthermore, associations between MTHFD2 and immune checkpoint genes were evaluated using the correlation analysis. RESULTS Transcriptome analysis manifested that MTHFD2 was highly expressed in UCB tissues than normal bladder tissues, which was further confirmed by western blot analysis in human BLCA cells and SV-HUC-1 cells. Moreover, MTHFD2 high expression was significantly associated with the advanced disease progression. Also, the high expression of MTHFD2 was correlated with poor prognosis, and MTHFD2 was considered as an independent prognostic factor for disease specific survival. Furthermore, a number of cancer-related pathways were enriched in MTHFD2 high group, including NF-κB activation, JAK/STAT, and cancer immunotherapy by PD1 blockade. Several immune checkpoint molecules were also strongly associated with MTHFD2 expression, including PDCD1, CD274, CTLA4, CD276, LAG3, HAVCR2, and TIGIT. CONCLUSIONS MTHFD2 expression was remarkably elevated in UCB, suggesting that MTHFD2 could be a promising biomarker for BLCA as well as novel target for anti-cancer immunotherapy since its close association with immune infiltration.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xianhui Liu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.,Peking University Applied Lithotripsy Institute, Peking University People's Hospital, Beijing, 100034, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
4
|
Audisio M, Tucci M, Di Stefano RF, Parlagreco E, Ungaro A, Turco F, Audisio A, Di Prima L, Ortega C, Di Maio M, Scagliotti GV, Buttigliero C. New emerging targets in advanced urothelial carcinoma: is it the primetime for personalized medicine? Crit Rev Oncol Hematol 2022; 174:103682. [DOI: 10.1016/j.critrevonc.2022.103682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
|
5
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
6
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
7
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Lv Y, Jin P, Chen Z, Zhang P. Characterization of hazard infiltrating immune cells and relative risk genes in bladder urothelial carcinoma. Am J Transl Res 2020; 12:7510-7527. [PMID: 33312386 PMCID: PMC7724318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Bladder urothelial carcinoma (BLCA) is one of the most common malignancies in urinary system. With the development of next-generation sequencing technology, we intended to investigate prognostic immune cells and related signature to predict the prognosis of BLCA and potential therapeutic targets. METHODS We obtained the transcriptome profiles of 573 BLCA patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The fractions of immune cells in each sample was calculated by "CIBERSORT" algorithm. Tumor Infiltrating Immune Cells Scores (TIICS) was accordingly derived and Receiver Operating Characteristic (ROC) curve was conducted to evaluate the predictive efficiency. Moreover, differential analysis was performed between two TIICS groups and hub TIICS-related immune signature was identified. The correlation of key immune genes and immune-infiltrating immune cells was evaluated based on the TIMER database. An Immune Signature Prognostic Index (ISPI) based on these signatures was constructed with superior predictive accuracy. Last, the TIICS model or related immune signature were all validated in an independent cohort from the GSE13507. RESULTS The least absolute shrinkage and selection operator (LASSO) algorithm was utilized to screen the 6 hub tumor-infiltrating immune cells in TCGA cohort, where higher infiltrating levels of M0 Macrophages, M2 Macrophages and Neutrophils were hazard factors, while CD8+ T cells and memory activated CD4+ T cells were protective factors. CONCLUSION Taken together, our study identified several prognostic immune cells and related immune signature in BLCA, shedding insight on the individualized immunotherapy or potential drug targets.
Collapse
Affiliation(s)
- Yinxiang Lv
- Department of Oncology, People’s Hospital of Xinchang CountyXinchang, Zhejiang Province, China
| | - Peng Jin
- Organ Transplant Center, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Zheng Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, China
| | - Peng Zhang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Baek SW, Jang IH, Kim SK, Nam JK, Leem SH, Chu IS. Transcriptional Profiling of Advanced Urothelial Cancer Predicts Prognosis and Response to Immunotherapy. Int J Mol Sci 2020; 21:ijms21051850. [PMID: 32182655 PMCID: PMC7084828 DOI: 10.3390/ijms21051850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023] Open
Abstract
Recent investigations reported that some subtypes from the Lund or The Cancer Genome Atlas (TCGA) classifications were most responsive to PD-L1 inhibitor treatment. However, the association between previously reported subtypes and immune checkpoint inhibitor (ICI) therapy responsiveness has been insufficiently explored. Despite these contributions, the ability to predict the clinical applicability of immune checkpoint inhibitor therapy in patients remains a major challenge. Here, we aimed to re-classify distinct subtypes focusing on ICI responsiveness using gene expression profiling in the IMvigor 210 cohort (n = 298). Based on the hierarchical clustering analysis, we divided advanced urothelial cancer patients into three subgroups. To confirm a prognostic impact, we performed survival analysis and estimated the prognostic value in the IMvigor 210 and TCGA cohort. The activation of CD8+ T effector cells was common for patients of classes 2 and 3 in the TCGA and IMvigor 210 cohort. Survival analysis showed that patients of class 3 in the TCGA cohort had a poor prognosis, while patients of class 3 showed considerably prolonged survival in the IMvigor 210 cohort. One of the distinct characteristics of patients in class 3 is the inactivation of the TGFβ and YAP/TAZ pathways and activation of the cell cycle and DNA replication and DNA damage (DDR). Based on our identified transcriptional patterns and the clinical outcomes of advanced urothelial cancer patients, we constructed a schematic summary. When comparing clinical and transcriptome data, patients with downregulation of the TGFβ and YAP/TAZ pathways and upregulation of the cell cycle and DDR may be more responsive to ICI therapy.
Collapse
Affiliation(s)
- Seung-Woo Baek
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-W.B.); (I.-H.J.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - In-Hwan Jang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-W.B.); (I.-H.J.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| | - Jong-Kil Nam
- Department of Urology, Research Institute for Convergence of Biochemical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Korea;
| | - In-Sun Chu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-W.B.); (I.-H.J.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: ; Tel.: +82-42-879-8520
| |
Collapse
|
10
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
11
|
Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat Rev Urol 2017; 15:92-111. [PMID: 29133939 DOI: 10.1038/nrurol.2017.179] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Effective management of advanced urothelial bladder cancer is challenging. New discoveries that improve our understanding of molecular bladder cancer subtypes have revealed numerous potentially targetable genomic alterations and demonstrated the efficacy of treatments that harness the immune system. These findings have begun to change paradigms of bladder cancer therapy. For example, DNA repair pathway mutations in genes such as ERCC2, FANCC, ATM, RB1, and others can predict responses to neoadjuvant platinum-based chemotherapies and to targeted therapies on the basis of mutation status. Furthermore, an increasing number of pan-cancer clinical trials (commonly referred to as basket or umbrella trials) are enrolling patients on the basis of molecular and genetic predictors of response. These studies promise to provide improved insight into the true utility of personalized medicine in the treatment of bladder cancer and many other cancer types. Finally, therapies that modulate immune responses have shown great benefit in many cancer types. Several immune checkpoint inhibitors that target programmed cell death protein 1 (PD1), its ligand PDL1, and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have already been approved for use in bladder cancer, representing the most important change to the urological oncologist's tool-kit in over a decade. These advances also provide opportunities for personalization of bladder cancer therapy.
Collapse
|
12
|
Obara W, Kato R, Kato Y, Kanehira M, Takata R. Recent progress in immunotherapy for urological cancer. Int J Urol 2017. [DOI: 10.1111/iju.13400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wataru Obara
- Department of Urology; Iwate Medical University School of Medicine; Morioka Japan
| | - Renpei Kato
- Department of Urology; Iwate Medical University School of Medicine; Morioka Japan
| | - Yoichiro Kato
- Department of Urology; Iwate Medical University School of Medicine; Morioka Japan
| | - Mitsugu Kanehira
- Department of Urology; Iwate Medical University School of Medicine; Morioka Japan
| | - Ryo Takata
- Department of Urology; Iwate Medical University School of Medicine; Morioka Japan
| |
Collapse
|
13
|
Zichi C, Tucci M, Leone G, Buttigliero C, Vignani F, Pignataro D, Scagliotti GV, Di Maio M. Immunotherapy for Patients with Advanced Urothelial Cancer: Current Evidence and Future Perspectives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5618174. [PMID: 28680882 PMCID: PMC5478823 DOI: 10.1155/2017/5618174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
Abstract
In recent years, immunotherapy has produced encouraging results in a rapidly increasing number of solid tumors. The responsiveness of bladder cancer to immunotherapy was first established in nonmuscle invasive disease in 1976 with intravesical instillations of bacillus Calmette-Guérin (BCG). Very recently immune checkpoint inhibitors demonstrated good activity and significant efficacy in metastatic disease. In particular the best results were obtained with programmed death-ligand-1 (PD-L1) and programmed death-1 (PD-1) inhibitors, but many other immune checkpoint inhibitors, including anti-cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) antibodies, are currently under investigation in several trials. Simultaneously other therapeutic strategies which recruit an adaptive immune response against tumoral antigens or employ externally manipulated tumor infiltrating lymphocytes might change the natural history of bladder cancer in the near future. This review describes the rationale for the use of immunotherapy in bladder cancer and discusses recent and ongoing clinical trials with checkpoint inhibitors and other novel immunotherapy agents.
Collapse
Affiliation(s)
- Clizia Zichi
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Marcello Tucci
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Gianmarco Leone
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Francesca Vignani
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10028 Turin, Italy
| | - Daniele Pignataro
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Giorgio V. Scagliotti
- Department of Oncology, University of Turin, Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10028 Turin, Italy
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Active investigation suggests immune checkpoint inhibitor therapy and therapeutic cancer vaccines provide clinical benefit for genitourinary malignancies including prostate cancer, renal cell carcinoma, and bladder cancer. Recent developments in the utility of immune checkpoint inhibitor and vaccine therapy for the management of genitourinary malignancies are highlighted in this review. RECENT FINDINGS Dramatic responses to checkpoint inhibitor therapy have been demonstrated in renal cell carcinoma and bladder cancer with recent Food and Drug Administration approvals in both indications. No benefit to checkpoint inhibitor therapy has yet been shown for the management of prostate cancer. Therapeutic cancer vaccines have also shown benefit in the treatment of genitourinary malignancies, specifically in the treatment of prostate cancer. Despite advances in these therapeutic modalities, benefit is limited to a subset of patients. SUMMARY Current evidence supports the use of immune checkpoint inhibitor therapy and therapeutic cancer vaccines for the management of genitourinary malignancies. Further development of biomarkers for predicting response and study of combination therapy is required to achieve optimal efficacy with these therapeutic interventions.
Collapse
Affiliation(s)
- Max M Wattenberg
- aHelen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California bGenitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
15
|
Tomita Y, Lee MJ, Lee S, Tomita S, Chumsri S, Cruickshank S, Ordentlich P, Trepel JB. The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 2016; 5:e1219008. [PMID: 27999738 PMCID: PMC5139687 DOI: 10.1080/2162402x.2016.1219008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
Entinostat, a class I-selective histone deacetylase inhibitor, has shown promising activity in ENCORE 301, a randomized, placebo-controlled, phase II trial of exemestane with or without entinostat in women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on a nonsteroidal aromatase inhibitor. ENCORE 301 showed an 8.3-mo improvement in median overall survival among patients who received entinostat. We investigated the impact of entinostat on immune subsets with CD40, HLA-DR, and immune checkpoint receptor expression analyses in 34 patient blood samples from ENCORE 301. We found that entinostat significantly decreased granulocytic and monocytic MDSCs at cycle 1 day 15. MDSC CD40 was significantly downregulated by entinostat. A significant increase in HLA-DR expression on CD14+ monocytes by entinostat was observed. Entinostat did not impact T-cell subsets or T-cell immune checkpoint receptor expression. Our findings suggest that a significant interplay between this epigenetic regimen and host immune homeostatic mechanisms may impact therapeutic outcome.
Collapse
Affiliation(s)
- Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Saori Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | | | | | | | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|