1
|
Fang W, Du J, Nie M, Wang X. Recent advances in flavonoid compounds for the treatment of prostate cancer. Mol Biol Rep 2024; 51:653. [PMID: 38734766 DOI: 10.1007/s11033-024-09567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Prostate cancer is a malignant epithelial tumor of the prostate gland and is the most common malignant tumor of the male genitourinary system. Pharmacological therapies, including chemotherapy and androgen deprivation therapy, play a key role in the treatment of prostate cancer. However, drug resistance and side effects limit the use of these drugs and so there is a need for new drug therapies for prostate cancer patients. Flavonoids, with their wide range of sources and diverse biological activities, have attracted much attention in the field of anti-tumor drug screening. In 2016, at least 58 flavonoids were reported to have anti-prostate cancer activity. In recent years, six additional flavonoid compounds have been found to have anti-prostate cancer potential. In this review, we have collected a large amount of evidence on the anti-prostate cancer effects of these six flavonoids, including a large number of cellular experiments and a small number of preclinical animal experiments. In addition, we predicted their drug-forming properties using Schrödinger's QikProp software and ADMETlab due to the lack of in vivo pharmacokinetic data for the six compounds. In conclusion, this review has fully confirmed the anti-prostate cancer effects of these six flavonoids, summarized their mechanisms of action and predicted their druggability. It provides a reference for the further development of these compounds into anti-prostate cancer drugs.
Collapse
Affiliation(s)
- Wenxuan Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Junfang Du
- School of Yao Medicine, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| |
Collapse
|
2
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
3
|
Noori M, Azizi S, Mahjoubfar A, Abbasi Varaki F, Fayyaz F, Mousavian AH, Bashash D, Kardoust Parizi M, Kasaeian A. Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1181051. [PMID: 38022569 PMCID: PMC10644317 DOI: 10.3389/fimmu.2023.1181051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of many cancers, however, its effectiveness in prostate cancer patients is still under question. In the present systematic review and meta-analysis, we sought for assessing the efficacy and safety of Immune checkpoint inhibitors (ICIs) in patients with prostate cancer. PubMed, Scopus, Web of Science, and EMBASE databases were searched on Aguste 19, 2022. Thirty five studies met the eligibility criteria. The median overall survival (mOS) of all treatments was 14.1 months, with the longest and shortest mOS was seen among patients who received anti-CTLA-4 monotherapy and anti-PD-1/PD-L1+anti-CTLA-4 regimen at 24.9 and 9.2 months, respectively. Noteworthy, all types of adverse events had the lowest incidence in the anti-PD-1/PD-L1 monotherapy group. Considering the ICI monotherapy regimens, we found that fatigue, diarrhea, and infusion reaction had the highest incidence rates. Future studies evaluating the efficacy and safety of novel combination therapies with ICIs are warranted.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Azizi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Mahjoubfar
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhan Abbasi Varaki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir-Hossein Mousavian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gong Z, Zhang H, Ge Y, Wang P. Long noncoding RNA MIAT regulates TP53 ubiquitination and expedites prostate adenocarcinoma progression by recruiting TBL1X. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119527. [PMID: 37356458 DOI: 10.1016/j.bbamcr.2023.119527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Despite recent advances in cancer immunotherapy, their efficacy for treating patients with prostate adenocarcinoma (PRAD) is low due to complex immune evasion mechanisms. However, the function of long non-coding RNA (lncRNAs) in immune evasion has not been fully clarified. This study aimed to expound the role of myocardial infarction-associated transcript (MIAT), a lncRNA significantly upregulated in three PRAD-associated datasets, in immune evasion and try to reveal the potential mechanism. MIAT was highly expressed in PRAD tissues and predicted poor prognosis, and suppression of MIAT inhibited the malignant biological behavior of PRAD cells. Moreover, the depletion of MIAT promoted the immune response of CD8+ T cells and hampered the immune evasion of PRAD cells. In addition, MIAT downregulated TP53 protein expression by recruiting transducin beta-like protein 1X (TBL1X) for ubiquitination modification. Silencing of TP53 or overexpression of TBL1X was enough to abate the tumor suppressive effects of MIAT knockdown in vitro and in vivo. Our results provide evidence for a novel regulation mechanism of CD8+ T cells in PRAD and MIAT may serve as a potential therapeutic target in PRAD.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yuntian Ge
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Peng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
5
|
Saleem S, Rashid AB, Shehzadi S, Mumtaz H, Saqib M, Bseiso A, Villasenor AV, Ahmed A, Sonia SN. Contemporaneous and upcoming trends in immunotherapy for prostate cancer: review. Ann Med Surg (Lond) 2023; 85:4005-4014. [PMID: 37554896 PMCID: PMC10406079 DOI: 10.1097/ms9.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. It affects more than 1.4 million men worldwide and kills up to 37 5000 people. PCa is routinely managed with chemotherapy and androgen deprivation therapy, but the success rate of these treatments is unsatisfactory. Immunotherapy is a novel method of treating different types of cancers, and it utilizes the body's own immune system to fight cancer. Different types of cancer respond differently to immunotherapy, with some showing excellent responses, while others do not show very satisfactory responses. PCa is known to be an immunologically cold tumor, such that conventional immunotherapy does not work as effectively as it works in other cancers. In the past decade, multiple studies and trials have been conducted to test different types of therapies, ranging from immune checkpoint inhibitors to anticancer vaccines to anticancer cytokines. Even after many studies, there is still a drug to be discovered that can completely cure any stage of PCa. Recent immunotherapeutic drug trials have started using immunotherapy in conjunction with chemotherapy and radiotherapy and have shown promising results. In this paper, the authors present a comprehensive overview of the currently used immunotherapeutic drugs as well as emerging immunotherapies, including modalities of combination immunotherapy with radiotherapy and chemotherapy. This review can help readers gain the latest knowledge about emerging trends in the current immunotherapy landscape for the treatment of PCa, as well as a general overview of the already used immunotherapy drugs for PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Anan Bseiso
- Hebron University, Palestine, State of Hebron
| | | | | | | |
Collapse
|
6
|
Feriz AM, Khosrojerdi A, Lotfollahi M, Shamsaki N, GhasemiGol M, HosseiniGol E, Fereidouni M, Rohban MH, Sebzari AR, Saghafi S, Leone P, Silvestris N, Safarpour H, Racanelli V. Single-cell RNA sequencing uncovers heterogeneous transcriptional signatures in tumor-infiltrated dendritic cells in prostate cancer. Heliyon 2023; 9:e15694. [PMID: 37144199 PMCID: PMC10151421 DOI: 10.1016/j.heliyon.2023.e15694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the two solid malignancies in which a higher T cell infiltration in the tumor microenvironment (TME) corresponds with a worse prognosis for the tumor. The inability of T cells to eliminate tumor cells despite an increase in their number reinforces the possibility of impaired antigen presentation. In this study, we investigated the TME at single-cell resolution to understand the molecular function and communication of dendritic cells (DCs) (as professional antigen-presenting cells). According to our data, tumor cells stimulate the migration of immature DCs to the tumor site by inducing inflammatory chemokines. Many signaling pathways such as TNF-α/NF-κB, IL2/STAT5, and E2F up-regulated after DCs enter the tumor location. In addition, some molecules such as GPR34 and SLCO2B1 decreased on the surface of DCs. The analysis of molecular and signaling alterations in DCs revealed some suppression mechanisms of tumors, such as removing mature DCs, reducing the DC's survival, inducing anergy or exhaustion in the effector T cells, and enhancing the differentiation of T cells to Th2 and Tregs. In addition, we investigated the cellular and molecular communication between DCs and macrophages in the tumor site and found three molecular pairs including CCR5/CCL5, CD52/SIGLEC10, and HLA-DPB1/TNFSF13B. These molecular pairs are involved in the migration of immature DCs to the TME and disrupt the antigen-presenting function of DCs. Furthermore, we presented new therapeutic targets by the construction of a gene co-expression network. These data increase our knowledge of the heterogeneity and the role of DCs in PCa TME.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Cellular and Molecular Research Center, BUMS, Birjand, Iran
| | | | - Mohammad Lotfollahi
- Computational Health Center, Helmholtz Munich, Germany
- Wellcome Sanger Institute, Cambridge, UK
| | - Neusha Shamsaki
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohammad GhasemiGol
- College of Engineering & Mines, University of North Dakota, North Dakota, USA
| | - Edris HosseiniGol
- Department of Computer Engineering, University of Birjand, Birjand, Iran
| | | | | | - Ahmad Reza Sebzari
- Radiation Oncology, Clinical Research Development Unit (CRDU), ValiAsr Hospital, BUMS, Birjand, Iran
| | - Samira Saghafi
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Hossein Safarpour
- Cellular and Molecular Research Center, BUMS, Birjand, Iran
- Corresponding author.
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy
- Corresponding author.
| |
Collapse
|
7
|
Boopathi E, Birbe R, Shoyele SA, Den RB, Thangavel C. Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers (Basel) 2022; 14:4305. [PMID: 36077840 PMCID: PMC9455007 DOI: 10.3390/cancers14174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease. Despite their initial response to androgen blockade, most patients eventually will develop metastatic castration-resistant prostate cancer (mCRPC). Bone metastases are common in men with mCRPC, occurring in 30% of patients within 2 years of castration resistance and in >90% of patients over the course of the disease. Patients with mCRPC-induced bone metastasis develop lesions throughout their skeleton; the 5-year survival rate for these patients is 47%. Bone-metastasis-induced early changes in the bone that proceed the osteoblastic response in the bone matrix are monitored and detected via modern magnetic resonance and PET/CT imaging technologies. Various treatment options, such as targeting osteolytic metastasis with bisphosphonates, prednisone, dexamethasone, denosumab, immunotherapy, external beam radiation therapy, radiopharmaceuticals, surgery, and pain medications are employed to treat prostate-cancer-induced bone metastasis and manage bone health. However, these diagnostics and treatment options are not very accurate nor efficient enough to treat bone metastases and manage bone health. In this review, we present the pathogenesis of PCa-induced bone metastasis, its deleterious impacts on vital organs, the impact of metastatic PCa on bone health, treatment interventions for bone metastasis and management of bone- and skeletal-related events, and possible current and future therapeutic options for bone management in the continuum of prostate cancer disease.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth Birbe
- Laboratory Medicine, Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Interdisciplinary Oncology, Department of Biochemistry & Molecular Biology, LSUHSC Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
9
|
Peng S, Hu P, Xiao YT, Lu W, Guo D, Hu S, Xie J, Wang M, Yu W, Yang J, Chen H, Zhang X, Zhu Y, Wang Y, Yang Y, Zhu G, Chen S, Wang J, Zhang B, Chen W, Wu H, Sun Z, Ding T, Zhang H, Yi Z, Liu M, Ren S. Single-cell analysis reveals EP4 as a target for restoring T cell infiltration and sensitizing prostate cancer to immunotherapy. Clin Cancer Res 2021; 28:552-567. [PMID: 34740924 DOI: 10.1158/1078-0432.ccr-21-0299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Immunotherapies targeting immune checkpoint molecules have shown promising treatment for a subset of cancers; however, many "cold" tumors, such as prostate cancer, remain unresponsive. We aimed to identify a potential targetable marker relevant to prostate cancer and develop novel immunotherapy. EXPERIMENTAL DESIGN Analysis of transcriptomic profiles at single-cell resolution was performed in clinical patients' samples, along with integrated analysis of multiple RNA-seq datasets. The antitumor activity of YY001, a novel EP4 antagonist, combined with anti-programmed cell death protein 1 (PD-1) antibody was evaluated both in vitro and in vivo Results: We identified EP4 (PTGER4) as expressed in epithelial cells and various immune cells and involved in modulating the prostate cancer immune microenvironment. YY001, a novel EP4 antagonist, inhibited the differentiation, maturation, and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) while enhancing the proliferation and anticancer functions of T cells. Furthermore, it reversed the infiltration levels of MDSCs and T cells in the tumor microenvironment by overturning the chemokine profile of tumor cells in vitro and in vivo The combined immunotherapy demonstrated a robust antitumor immune response as indicated by the robust accumulation and activation of CD8+ cytotoxic T cells, with a significantly decreased MDSC ratio and reduced MDSC immunosuppression function. CONCLUSIONS Our study identified EP4 as a specific target for prostate cancer immunotherapy and demonstrated that YY001 inhibited the growth of prostate tumors by regulating the immune microenvironment and strongly synergized with anti-PD-1 antibodies to convert completely unresponsive prostate cancers into responsive cancers, resulting in marked tumor regression, long-term survival, and lasting immunologic memory.
Collapse
Affiliation(s)
- Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Pan Hu
- East China Normal University
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital
| | - Weiqiang Lu
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Dandan Guo
- Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Shixiu Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Weiwei Yu
- School of Life Sciences, Institute of Biomedical Sciences
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Yasheng Zhu
- Department of Urology, Second Military Medical University
| | | | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University
| | | | | | | | | | | | - Huangan Wu
- Shanghai University of Traditional Chinese Medicine
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
| | - Tao Ding
- Urology, Shanghai Putuo Hospital, Shanghai Traditional Chinese Medicine University
| | - Hankun Zhang
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Zhengfang Yi
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | |
Collapse
|
10
|
Fu M, Wang Q, Wang H, Dai Y, Wang J, Kang W, Cui Z, Jin X. Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence. Front Genet 2021; 12:639642. [PMID: 34490029 PMCID: PMC8417385 DOI: 10.3389/fgene.2021.639642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is an immune-responsive disease. The current study sought to explore a robust immune-related prognostic gene signature for PCa. Methods Data were retrieved from the tumor Genome Atlas (TCGA) database and GSE46602 database for performing the least absolute shrinkage and selection operator (LASSO) cox regression model analysis. Immune related genes (IRGs) data were retrieved from ImmPort database. Results The weighted gene co-expression network analysis (WGCNA) showed that nine functional modules are correlated with the biochemical recurrence of PCa, including 259 IRGs. Univariate regression analysis and survival analysis identified 35 IRGs correlated with the prognosis of PCa. LASSO Cox regression model analysis was used to construct a risk prognosis model comprising 18 IRGs. Multivariate regression analysis showed that risk score was an independent predictor of the prognosis of PCa. A nomogram comprising a combination of this model and other clinical features showed good prediction accuracy in predicting the prognosis of PCa. Further analysis showed that different risk groups harbored different gene mutations, differential transcriptome expression and different immune infiltration levels. Patients in the high-risk group exhibited more gene mutations compared with those in the low-risk group. Patients in the high-risk groups showed high-frequency mutations in TP53. Immune infiltration analysis showed that M2 macrophages were significantly enriched in the high-risk group implying that it affected prognosis of PCa patients. In addition, immunostimulatory genes were differentially expressed in the high-risk group compared with the low-risk group. BIRC5, as an immune-related gene in the prediction model, was up-regulated in 87.5% of prostate cancer tissues. Knockdown of BIRC5 can inhibit cell proliferation and migration. Conclusion In summary, a risk prognosis model based on IGRs was developed. A nomogram comprising a combination of this model and other clinical features showed good accuracy in predicting the prognosis of PCa. This model provides a basis for personalized treatment of PCa and can help clinicians in making effective treatment decisions.
Collapse
Affiliation(s)
- Min Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Wang
- Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Dai
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Ultrasound, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zilian Cui
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102424. [PMID: 34067757 PMCID: PMC8156049 DOI: 10.3390/cancers13102424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence indicates calcium-binding S100 protein involvement in inflammation and tumor progression. In this prospective study, we evaluated the mRNA levels of two members of this family, S100A9 and S100A12, in peripheral blood mononuclear cells (PBMCs) in a cohort of 121 prostate cancer patients using RT-PCR. Furthermore, monocyte count was determined by flow cytometry. By stratifying patients into different risk groups, according to TNM stage, Gleason score and PSA concentration at diagnosis, expression of S100A9 and S100A12 was found to be significantly higher in patients with metastases compared to patients without clinically detectable metastases. In line with this, we observed that the protein levels of S100A9 and S100A12 in plasma were higher in patients with advanced disease. Importantly, in patients with metastases at diagnosis, high monocyte count and high levels of S100A9 and S100A12 were significantly associated with short progression free survival (PFS) after androgen deprivation therapy (ADT). High monocyte count and S100A9 levels were also associated with short cancer-specific survival, with monocyte count providing independent prognostic information. These findings indicate that circulating levels of monocytes, as well as S100A9 and S100A12, could be biomarkers for metastatic prostate cancer associated with particularly poor prognosis.
Collapse
|
12
|
Hernando Polo S, Moreno Muñoz D, Rosero Rodríguez AC, Silva Ruiz J, Rosero Rodríguez DI, Couñago F. Changing the History of Prostate Cancer with New Targeted Therapies. Biomedicines 2021; 9:biomedicines9040392. [PMID: 33917592 PMCID: PMC8067446 DOI: 10.3390/biomedicines9040392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) is changing due to the emergence of new targeted therapies for the treatment of different molecular subtypes. Some biomarkers are described as potential molecular targets different from classic androgen receptors (AR). Approximately 20–25% of mCRPCs have somatic or germline alterations in DNA repair genes involved in homologous recombination. These subtypes are usually associated with more aggressive disease. Inhibitors of the enzyme poly ADP ribose polymerase (PARPi) have demonstrated an important benefit in the treatment of these subtypes of tumors. However, tumors that resistant to PARPi and wildtype BRCA tumors do not benefit from these therapies. Recent studies are exploring drug combinations with phosphatidylinositol-3-kinase (PI3K) or protein kinase B (AKT) inhibitors, as mechanisms to overcome resistance or to induce BRCAness and synthetic lethality. This article reviews various different novel strategies to improve outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Susana Hernando Polo
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
- Correspondence: (S.H.P.); (D.M.M.); Tel.: +34-916-219-490 (S.H.P. & D.M.M.)
| | - Diana Moreno Muñoz
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
- Correspondence: (S.H.P.); (D.M.M.); Tel.: +34-916-219-490 (S.H.P. & D.M.M.)
| | | | - Jorge Silva Ruiz
- Centro Nacional de Investigaciones Oncológicas (CNIO), Unidad de Cáncer de Mama, 28029 Madrid, Spain;
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine, Universidad Europea, 28670 Madrid, Spain
| |
Collapse
|
13
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
14
|
Wang L, Pan S, Zhu B, Yu Z, Wang W. Comprehensive analysis of tumour mutational burden and its clinical significance in prostate cancer. BMC Urol 2021; 21:29. [PMID: 33632199 PMCID: PMC7905899 DOI: 10.1186/s12894-021-00795-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The tumorigenesis of prostate cancer involves genetic mutations. Tumour mutational burden (TMB) is an emerging biomarker for predicting the efficacy of immunotherapy. RESULTS Single-nucleotide polymorphisms were the most common variant type, and C>T transversion was the most commonly presented type of single-nucleotide variant. The high-TMB group had lower overall survival (OS) than the low-TMB group. TMB was associated with age, T stage and N stage. Functional enrichment analysis of differentially expressed genes (DEGs) showed that they are involved in pathways related to the terms spindle, chromosomal region, nuclear division, chromosome segregation, cell cycle, oocyte meiosis and other terms associated with DNA mutation and cell proliferation. Six hub genes, PLK1, KIF2C, MELK, EXO1, CEP55 and CDK1, were identified. All the genes were associated with disease-free survival, and CEP55 and CDK1 were associated with OS. CONCLUSIONS The present study provides a comprehensive analysis of the significance of TMB and DEGs and infiltrating immune cells related to TMB, which provides helpful information for exploring the significance of TMB in prostate cancer.
Collapse
Affiliation(s)
- Lijuan Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Shucheng Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Binbin Zhu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Zhenliang Yu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Wei Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
15
|
Kamran SC, Zietman AL. Curing Metastatic Disease With Ablative Radiation Therapy: Separating Truth From Wish. Int J Radiat Oncol Biol Phys 2021; 107:433-436. [PMID: 32531389 DOI: 10.1016/j.ijrobp.2020.02.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Anthony L Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
17
|
Tsaur I, Brandt MP, Juengel E, Manceau C, Ploussard G. Immunotherapy in prostate cancer: new horizon of hurdles and hopes. World J Urol 2020; 39:1387-1403. [PMID: 33106940 PMCID: PMC8514362 DOI: 10.1007/s00345-020-03497-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Prostate cancer (PCa) is the most common malignancy in men and the cause for the second most common cancer-related death in the western world. Despite ongoing development of novel approaches such as second generation androgen receptor targeted therapies, metastatic disease is still fatal. In PCa, immunotherapy (IT) has not reached a therapeutic breakthrough as compared to several other solid tumors yet. We aimed at highlighting the underlying cellular mechanisms crucial for IT in PCa and giving an update of the most essential past and ongoing clinical trials in the field. Methods We searched for relevant publications on molecular and cellular mechanisms involved in the PCa tumor microenvironment and response to IT as well as completed and ongoing IT studies and screened appropriate abstracts of international congresses. Results Tumor progression and patient outcomes depend on complex cellular and molecular interactions of the tumor with the host immune system, driven rather dormant in case of PCa. Sipuleucel-T and pembrolizumab are the only registered immune-oncology drugs to treat this malignancy. A plethora of studies assess combination of immunotherapy with other agents or treatment modalities like radiation therapy which might increase its antineoplastic activity. No robust and clinically relevant prognostic or predictive biomarkers have been established yet. Conclusion Despite immunosuppressive functional status of PCa microenvironment, current evidence, based on cellular and molecular conditions, encourages further research in this field.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Maximilian P Brandt
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Cécile Manceau
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Guillaume Ploussard
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France.,Department of Urology, La Croix du Sud Hospital, Toulouse, France
| |
Collapse
|
18
|
Junker K, Eckstein M, Fiorentino M, Montironi R. PD1/PD-L1 Axis in Uro-oncology. Curr Drug Targets 2020; 21:1293-1300. [PMID: 32213156 DOI: 10.2174/1389450121666200326123700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The immune system is important to control tumor development and progression in humans. However, tumor cells and cells of the tumor microenvironment can induce immune escape mechanisms including activation of immune checkpoints such as PD-1/PD-L1. Based on this knowledge, new immune therapies, including PD-1 and PD-L1 inhibition, have been developed and are already recommended as a standard treatment in metastatic bladder and kidney cancer patients. In addition to its role as a therapeutic target, PD-L1 seems to be a prognostic parameter although data are controversial. Only little is known about signaling pathways inducing PD-L1 expression in tumor cells on one hand and about its functional role for tumor cells itself. However, the understanding of the complex biological function of PD-L1 will improve therapeutic options in urological malignancies. This review is giving an overview of the current knowledge concerning the PD-1/PD-L1 axis in urological tumors including bladder, kidney, prostate, testicular and penile cancer.
Collapse
Affiliation(s)
- Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| |
Collapse
|
19
|
Silva D, Abreu-Mendes P, Mourato C, Martins D, Cruz R, Mendes F. Prostate cancer, new treatment advances - immunotherapy. Actas Urol Esp 2020; 44:458-468. [PMID: 32473820 DOI: 10.1016/j.acuro.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the fourth most common cancer in the world and treatment is currently based on surgical removal and/or radiotherapy and/or hormone therapy. In the last few years' immunotherapy has become an important cancer treatment option. While the principles of immunotherapy evolved, only sipuleucel-T was approved by the Food and Drug Administration (FDA) which lead to further studies with other agents, starting a new era in immuno-oncology. A number of vaccines are under clinical investigation as well as checkpoint inhibitors. Despite the current enthusiasm, it is unlikely that any of the approaches alone can dramatically change PCa outcomes, but strategies combination is more promising and provide a reason for optimism. The goal of immunotherapy in PCa does not have to be the complete eradication of advanced disease, but rather the return to an immunologic equilibrium with an indolent disease state. With such concerted efforts, the future of immunotherapy in PCa looks brighter than ever, with many clinical trial results being published soon.
Collapse
|
20
|
Shi B, Qi J. The prognostic value and potential subtypes of immune activity scores in three major urological cancers. J Cell Physiol 2020; 236:2620-2630. [PMID: 32853461 DOI: 10.1002/jcp.30018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/17/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023]
Abstract
Immune-based rather than cancer-based classification systems are becoming an important additional component for prognostic prediction. Herein, we investigate the status of tumor-immune interaction and prognostic value of immune activity scores in bladder urothelial carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), and prostate adenocarcinoma (PRAD) from The Cancer Genome Atlas dataset and tracking the tumor immunophenotype platform. Traditional clinicopathological parameters still are effective predictors for prognosis. Comparison of 23-set, seven-step immune activity scores, and its distribution between favorable and adverse outcome groups within each cancer type and among cancer types show that each cancer has a distinct tumor-immune pattern. Adjusted overall immune activity scores based on the binary logistic regression analysis show a great discrimination ability in the progression-free survival (p = .0056 in BLCA, p < .0001 in KIRC, and p < .0001 in PRAD). K-mean cluster method and principal component analysis were performed to explore the cancer subtype. The results reveal that certain immune activity scores pattern such as high nature killer (NK) cell, T cell, macrophage, T helper type 1 (Th1) cell, and dendritic cell recruiting scores in BLCA, low NK cell, CD8 T cell, macrophage, T cell, Th1 cell recruiting scores in KIRC have a favorable clinical outcome comparing to other subtypes. Also, It is remarkable that a relatively small subtype of patients has a poor clinical prognosis in PRAD and this subtype features high CD4 T cell, macrophage, T cell, and regulatory T cell recruiting scores.
Collapse
Affiliation(s)
- Bowen Shi
- Department of Urology, School of Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jun Qi
- Department of Urology, School of Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Powerski M, Drewes R, Omari J, Relja B, Surov A, Pech M. Intra-hepatic Abscopal Effect Following Radioembolization of Hepatic Metastases. Cardiovasc Intervent Radiol 2020; 43:1641-1649. [PMID: 32808201 PMCID: PMC7591411 DOI: 10.1007/s00270-020-02612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023]
Abstract
Purpose To search for abscopal effects (AE) distant to the site of radiation after sequential Yittrium-90 (Y-90) radioembolization (RE) of liver malignancies. Methods and Materials In this retrospective analysis, all patients treated by RE between 2007 and 2018 (n = 907) were screened for the following setting/conditions: sequential RE of left and right liver lobe in two sessions, liver-specific MRI (MRI1) acquired max. 10 days before or after first RE (RE1), liver-specific MRI (MRI2) acquired with a minimum time interval of 20 days after MRI1, but before second RE (RE2). No systemic tumor therapies between MRI1 and MRI2. No patients with liver cirrhosis. Metastases > 5 mm in untreated liver lobes were compared in MRI1 and MRI2 and rated as follows: same size or larger in MRI2 = no abscopal effect (NAE); > 30% shrinkage without Y-90 contamination in SPECT/CT = abscopal effect (AE). Results Ninety six of 907 patients met aforementioned criteria. Median time-frame between RE1 and MRI2 was 34 (20–64) days. These 96 cases had 765 metastases which were evaluable (median 5(1–40) metastases per patient). Four patients could be identified with at least one shrinking metastasis of the untreated site: one patient with breast cancer (3 metastases: 0 NAE; 3 AE), one patient with prostate cancer (6 metastases: 3 NAE; 3 metastases > 30% shrinkage but possible Y-90 contamination) and two patients with shrinkage of one metastasis each but less than 30%. Conclusion Our retrospective study documents AE after RE of liver tumors in 1 out of 96 cases, 3 other cases remain unclear.
Collapse
Affiliation(s)
- Maciej Powerski
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ralph Drewes
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Jazan Omari
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.,2nd Department of Radiology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214, Gdansk, Poland
| |
Collapse
|
22
|
Application of Anti-Inflammatory Agents in Prostate Cancer. J Clin Med 2020; 9:jcm9082680. [PMID: 32824865 PMCID: PMC7464558 DOI: 10.3390/jcm9082680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a major cause of human cancers. The environmental factors, such as microbiome, dietary components, and obesity, provoke chronic inflammation in the prostate, which promotes cancer development and progression. Crosstalk between immune cells and cancer cells enhances the secretion of intercellular signaling molecules, such as cytokines and chemokines, thereby orchestrating the generation of inflammatory microenvironment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play pivotal roles in inflammation-associated cancer by inhibiting effective anti-tumor immunity. Anti-inflammatory agents, such as aspirin, metformin, and statins, have potential application in chemoprevention of prostate cancer. Furthermore, pro-inflammatory immunity-targeted therapies may provide novel strategies to treat patients with cancer. Thus, anti-inflammatory agents are expected to suppress the “vicious cycle” created by immune and cancer cells and inhibit cancer progression. This review has explored the immune cells that facilitate prostate cancer development and progression, with particular focus on the application of anti-inflammatory agents for both chemoprevention and therapeutic approach in prostate cancer.
Collapse
|
23
|
Stokidis S, Fortis SP, Kogionou P, Anagnostou T, Perez SA, Baxevanis CN. HLA Class I Allele Expression and Clinical Outcome in De Novo Metastatic Prostate Cancer. Cancers (Basel) 2020; 12:cancers12061623. [PMID: 32570992 PMCID: PMC7352811 DOI: 10.3390/cancers12061623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
The prognostic value of human leukocyte antigen (HLA) class I molecules in prostate cancer (PCa) remains unclear. Herein, we investigated the prognostic relevance of the most frequently expressed HLA-A alleles in Greece (A*02:01 and HLA-A*24:02) in de novo metastatic hormone-sensitive PCa (mPCa), which is a rare and aggressive disease characterized by a rapid progression to castration-resistance (CR) and poor overall survival (OS), contributing to almost 50% of PCa-related deaths. We identified 56 patients who had either progressed to CR (these patients were retrospectively analyzed for the time to the progression of CR and prospectively for OS) or had at least three months’ follow-up postdiagnosis without CR progression and, thus, were prospectively analyzed for both CR and OS. Patients expressing HLA-A*02:01 showed poor clinical outcomes vs. HLA-A*02:01−negative patients. HLA-A*24:02−positive patients progressed slower to CR and had increased OS. Homozygous HLA-A*02:01 patients progressed severely to CR, with very short OS. Multivariate analyses ascribed to both HLA alleles significant prognostic values for the time to progression (TTP) to CR and OS. The presence of HLA-A*02:01 and HLA-A*24:02 alleles in de novo mPCa patients are significantly and independently associated with unfavorable or favorable clinical outcomes, respectively, suggesting their possible prognostic relevance for treatment decision-making in the context of precision medicine.
Collapse
Affiliation(s)
- Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Paraskevi Kogionou
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Theodoros Anagnostou
- Department of Urology, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece;
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
- Correspondence: ; Tel.: +30-210-640-9624
| |
Collapse
|
24
|
Bou-Dargham MJ, Sha L, Sang QXA, Zhang J. Immune landscape of human prostate cancer: immune evasion mechanisms and biomarkers for personalized immunotherapy. BMC Cancer 2020; 20:572. [PMID: 32552802 PMCID: PMC7302357 DOI: 10.1186/s12885-020-07058-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/10/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Despite recent advances in cancer immunotherapy, the efficacy of these therapies for the treatment of human prostate cancer patients is low due to the complex immune evasion mechanisms (IEMs) of prostate cancer and the lack of predictive biomarkers for patient responses. METHODS To understand the IEMs in prostate cancer and apply such understanding to the design of personalized immunotherapies, we analyzed the RNA-seq data for prostate adenocarcinoma from The Cancer Genome Atlas (TCGA) using a combination of biclustering, differential expression analysis, immune cell typing, and machine learning methods. RESULTS The integrative analysis identified eight clusters with different IEM combinations and predictive biomarkers for each immune evasion cluster. Prostate tumors employ different combinations of IEMs. The majority of prostate cancer patients were identified with immunological ignorance (89.8%), upregulated cytotoxic T lymphocyte-associated protein 4 (CTLA4) (58.8%), and upregulated decoy receptor 3 (DcR3) (51.6%). Among patients with immunologic ignorance, 41.4% displayed upregulated DcR3 expression, 43.26% had upregulated CTLA4, and 11.4% had a combination of all three mechanisms. Since upregulated programmed cell death 1 (PD-1) and/or CTLA4 often co-occur with other IEMs, these results provide a plausible explanation for the failure of immune checkpoint inhibitor monotherapy for prostate cancer. CONCLUSION These findings indicate that human prostate cancer specimens are mostly immunologically cold tumors that do not respond well to mono-immunotherapy. With such identified biomarkers, more precise treatment strategies can be developed to improve therapeutic efficacy through a greater understanding of a patient's immune evasion mechanisms.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.
| | - Linlin Sha
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA. .,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
25
|
Bargão Santos P, Lobo J, Félix A, Silva F, Manso RT, Costa JO, Lourenço B, Sequeira JP, Jerónimo C, Patel HHR, Henrique R. The inflammation-related biomarker CXCR7 independently predicts patient outcome after radical prostatectomy. Urol Oncol 2020; 38:794.e17-794.e27. [PMID: 32278731 DOI: 10.1016/j.urolonc.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The influence of inflammation on prostate tumor carcinogenesis is currently much better known than with its role in prostate cancer (CaP) progression. We evaluated the prognostic value of epigenetic (HDAC1, HDAC4, H3Ac) and inflammation-related (CXCR4, CXCR7, CXCL12) biomarkers immunoexpression, in radical prostatectomy specimens, from 2 cohorts of CaP patients with long term follow-up. MATERIALS AND METHODS Formalin-fixed and paraffin-embedded radical prostatectomy specimens were obtained from the pathology archives of Prof. Doutor Fernando Fonseca Hospital, in Amadora, Portugal and Portuguese Oncology Institute of Porto, in Porto, Portugal, and tissue microarrays were assembled. It was achieved a set of 234 patients submitted to radical retropubic prostatectomy between January 2000 and December 2005. Immunohistochemistry was used for evaluation of protein expression of epigenetic and inflammation-related markers. Nuclear staining was assessed using digital image analysis. Study outcomes included disease-specific survival and disease-free survival (DFS). Statistical analysis was tabulated using SPSS version 23.0. Hazard ratios (HRs) and survival curves were estimated using Cox-regression and Kaplan-Meyer models, respectively. Statistical significance was set at P < 0.05. RESULTS Complete follow-up data was available for 234 patients and median follow-up time was 164 [11-218] months. Patients with higher CXCR4 immunoexpression experienced significantly worse disease-specific survival compared to patients with low expression (HR = 1.016, 95% CI: 1.002-1.031). The same happened with CXCL12 (HR = 0.546 95% CI: 0.322-0.926) and H3Ac (HR = 1.015, 95% CI: 1.001c1.029). In what concerns to DFS, patients with higher expression of CXCR4 and CXCR7 were significantly more prone to experience disease recurrence (HR = 1.003, 95% CI: 1.000-1.005 and HR = 1.111, 95% CI:1.032-1.196, respectively). When adjusted to pTStage and WHO Grade Groups, CXCR7 maintained independent impact on DFS (HR = 1.119, 95% CI: 1.032-1.214). CONCLUSIONS The interplay between inflammation and epigenetics and its impact in CaP outcome deserves further studies in the future. CXCR7 shows an independent predictor for worse DFS after radical prostatectomy, and could provide important prognostic information for patient management after radical prostatectomy.
Collapse
Affiliation(s)
- Pedro Bargão Santos
- Department of Urology, Prof. Doutor Fernando Fonseca Hospital, Amadora, Portugal.
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisbon, Lisbon, Portugal; Department of Pathology, NOVA Medical School, Lisbon, Portugal
| | - Fernanda Silva
- Department of Pathology, NOVA Medical School, Lisbon, Portugal
| | - Rita Theias Manso
- Department of Pathology, Prof. Doutor Fernando Fonseca Hospital, Amadora, Portugal
| | - João O Costa
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Beatriz Lourenço
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hitendra H R Patel
- Department of Urology, University Hospital North Norway, Norway; Department of Urology, St George´s University Hospitals, Tooting, London, United Kingdom
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
26
|
Sanaei M, Salimzadeh L, Bagheri N. Crosstalk between myeloid‐derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol 2019; 107:43-56. [DOI: 10.1002/jlb.4ru0819-150rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammad‐Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| | - Loghman Salimzadeh
- Department of MedicineNational University of Singapore Singapore Singapore
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
27
|
Yunger S, Bar El A, Zeltzer LA, Fridman E, Raviv G, Laufer M, Schachter J, Markel G, Itzhaki O, Besser MJ. Tumor-infiltrating lymphocytes from human prostate tumors reveal anti-tumor reactivity and potential for adoptive cell therapy. Oncoimmunology 2019; 8:e1672494. [PMID: 31741775 PMCID: PMC6844325 DOI: 10.1080/2162402x.2019.1672494] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Advanced prostate cancer remains incurable and is the second leading cause of mortality in men. Immunotherapy based on the adoptive transfer of tumor-infiltrating lymphocytes (TIL) has demonstrated promising clinical results in patients with metastatic melanoma and lately also in other solid tumors. However, the ability to obtain TIL from patients with prostate cancer, considered poorly immunogenic, remains unknown. In this study, we investigate the feasibility of isolating and expanding TIL from primary prostate tumors. We collected tumor specimens from eight patients with diagnosed prostate adenocarcinoma undergoing radical prostatectomy and were able to successfully expand multiple autologous TIL cultures from all patients. Twenty-eight prostate-TIL cultures were further expanded using a standard rapid expansion procedure under Good Manufacturing Practice conditions. TIL cultures were phenotypically characterized for T cell subset composition, differentiation status and co-inhibitory/stimulatory markers such as PD-1, TIM-3, LAG-3, and CD28 and were found to have in general similarity to TIL obtained from patients with melanoma and lung carcinoma previously treated at our center. All analyzed TIL cultures were functional as determined by the capability to produce high level of IFNγ upon stimuli. Most importantly, co-culture assays of prostate-TIL with autologous tumors demonstrated anti-tumor reactivity. In conclusion, these findings demonstrate that functional and anti-tumor reactive TIL can be obtained, despite the immunosuppressive microenvironment of the cancer, thus this study supports the development of TIL therapy for prostate cancer patients.
Collapse
Affiliation(s)
- Sharon Yunger
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Assaf Bar El
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel.,Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Li-At Zeltzer
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Eddie Fridman
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel.,The Sackler Medical of School, Tel-Aviv University, Tel Aviv, Israel
| | - Gil Raviv
- Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Menachem Laufer
- Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel.,Department of Clinical Microbiology and Immunology,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno Oncology, Sheba Medical Center, Ramat Gan, Israel.,Department of Clinical Microbiology and Immunology,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Richardsen E, Andersen S, Al-Saad S, Rakaee M, Nordby Y, Pedersen MI, Ness N, Ingebriktsen LM, Fassina A, Taskén KA, Mills IG, Donnem T, Bremnes RM, Busund LT. Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer. Sci Rep 2019; 9:10662. [PMID: 31337863 PMCID: PMC6650397 DOI: 10.1038/s41598-019-47234-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PC) is a highly heterogenous disease and one of the leading causes of mortality in developed countries. Recently, studies have shown that expression of immune checkpoint proteins are directly or indirectly repressed by microRNAs (miRs) in many types of cancers. The great advantages of using miRs based therapy is the capacity of these short transcripts to target multiple molecules for the same- or different pathways with synergistic immune inhibition effects. miR-424 has previously been described as a biomarker of poor prognosis in different types of cancers. miR-424 is also found to target both the CTLA-4/CD80- and PD-1/PD-L1 axis. In the present study, the clinical significance of miR-424-3p expression in PC tissue was evaluated. Naïve radical prostatectomy specimens from 535 patients was used for tissue microarray construction. In situ hybridization was used to evaluate the expression of miR-424-3p and immunohistochemistry was used for CTLA-4 protein detection. In univariate- and multivariate analyses, low expression of miR-424-3p was significant associated with clinical failure-free survival, (p = 0.004) and p = 0.018 (HR:0.44, CI95% 0.22-0.87). Low expression of miR-424-3p also associated strongly with aggressive phenotype of PC. This highlight the importance of miR-424-3p as potential target for therapeutic treatment in prostate cancer.
Collapse
Affiliation(s)
- E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - S Al-Saad
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Y Nordby
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Urology, University Hospital of North Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - N Ness
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - A Fassina
- Department of Medicine, University of Padua, 35121, Padova, Italy
| | - K A Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I G Mills
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
29
|
Rathke H, Flechsig P, Mier W, Bronzel M, Mavriopoulou E, Hohenfellner M, Giesel FL, Haberkorn U, Kratochwil C. Dosimetry Estimate and Initial Clinical Experience with 90Y-PSMA-617. J Nucl Med 2018; 60:806-811. [PMID: 30389816 DOI: 10.2967/jnumed.118.218917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/22/2018] [Indexed: 01/17/2023] Open
Abstract
Because of different physical properties, the β-emitters 177Lu and 90Y offer specific radiologic-biologic advantages in dedicated clinical situations. Our objective was to introduce 90Y-labeled prostate-specific membrane antigen (PSMA)-617 to clinical application, providing additional avenues for personalized medicine. Here, we present our dosimetry estimate for 90Y-PSMA-617, report first clinical experiences, and discuss the advantages and drawbacks of varying the β-emitter in PSMA-targeting radioligand therapy. Methods: To approximate radiation dosimetry, 4 patients with metastatic castration-resistant prostate cancer underwent serially performed imaging up to 1 wk after 177Lu-PSMA-617 therapy. Time-activity curves were extrapolated to the half-life of 90Y, and OLINDA was used to calculate the dosimetry estimate. In clinical practice, 11 patients with PSMA-positive lymph-nodal bulk disease were stratified to receive 90Y-PSMA-617 radioligand therapy (mean, 3.2 GBq; range, 2.8-3.7 GBq); afterward, safety lab tests, prostate-specific antigen (PSA) response, and clinical findings were thoroughly followed. Results: The projected dosimetry for 90Y-PSMA-617 estimated a mean kidney dose of 3.47 ± 1.40 Gy/GBq, red marrow dose of 0.11 ± 0.04 Gy/GBq, and salivary gland dose of 5.57 ± 1.34 Gy/GBq; randomly chosen metastases were approximated with 22.8 ± 16.10 Gy/GBq. The observed acute hematologic toxicity (5 cases of leukopenia and 2 of thrombocytopenia, all grade 1 or 2) and clinical side effects (2 cases of transient xerostomia and 1 of nausea, all grade 1 or 2), as well as PSA response (any PSA response, 7/11 patients; >50% PSA decline, 5/11 patients), were comparable to 177Lu-PSMA-617 literature data. Conclusion: A factor 3-4 lower treatment activity for 90Y-PSMA-617 translates into a comparable dosimetry estimate and clinical findings similar to those of 177Lu-PSMA-617. However, safety was demonstrated only for patients with oligometastatic disease. Further studies are needed to evaluate its potential in patients with more disseminated bone involvement or visceral metastasis.
Collapse
Affiliation(s)
- Hendrik Rathke
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul Flechsig
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eleni Mavriopoulou
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Frederik Lars Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany; and.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|