1
|
Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A, Imbriaco M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp 2019; 3:35. [PMID: 31392526 PMCID: PMC6686027 DOI: 10.1186/s41747-019-0109-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
With this review, we aimed to provide a synopsis of recently proposed applications of machine learning (ML) in radiology focusing on prostate magnetic resonance imaging (MRI). After defining the difference between ML and classical rule-based algorithms and the distinction among supervised, unsupervised and reinforcement learning, we explain the characteristic of deep learning (DL), a particular new type of ML, including its structure mimicking human neural networks and its 'black box' nature. Differences in the pipeline for applying ML and DL to prostate MRI are highlighted. The following potential clinical applications in different settings are outlined, many of them based only on MRI-unenhanced sequences: gland segmentation; assessment of lesion aggressiveness to distinguish between clinically significant and indolent cancers, allowing for active surveillance; cancer detection/diagnosis and localisation (transition versus peripheral zone, use of prostate imaging reporting and data system (PI-RADS) version 2), reading reproducibility, differentiation of cancers from prostatitis benign hyperplasia; local staging and pre-treatment assessment (detection of extraprostatic disease extension, planning of radiation therapy); and prediction of biochemical recurrence. Results are promising, but clinical applicability still requires more robust validation across scanner vendors, field strengths and institutions.
Collapse
Affiliation(s)
- Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Maria Brunella Cipullo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy.
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Leonardo Radice
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| |
Collapse
|