1
|
Shokri P, Kharaz L, Talebian N, Borumandnia N, Ziaee SAM, Shakhssalim N. A systematic review and meta-analysis of complications of artificial urinary sphincters in female patients with urinary incontinence due to internal sphincter insufficiency. BMC Urol 2023; 23:97. [PMID: 37210489 DOI: 10.1186/s12894-023-01274-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Urinary incontinence (UI) is a common worldwide rising health issue among women with a prevalence of 5 to 70%. Stress urinary incontinence (SUI) is the most common subtype of UI. There are different treatments for UI, including AUS (artificial urinary sphincter) implantation, as one of the surgical options for treating SUI. The aim of this study was to determine the complication rate of AUS, exclusively in female patients with SUI, which resulted from ISD (intrinsic sphincter deficiency). We also compared the complication rate between minimally invasive (laparoscopic or robotic surgery) and open approaches. METHODS Scopus, PubMed, Web of Science, Embase, and Google Scholar were searched for studies regarding complications in AUS implantation surgery, from the beginning of the project to March 2022. After screening and reviewing of full text, the general characteristics of the study and study population including follow-up time, type of surgery, and the number of complications that occurred such as necrosis, atrophy, erosion, infection, mechanical failure, revision, and leak, were extracted. RESULTS We found that atrophy occurred in 1 of 188 (0.53%) patients treated with minimally invasive surgery and in 1 of 669 (0.15%) patients treated with open surgery. None of the 17 included studies reported the occurrence of necrosis in the patients under study. Erosion occurred in 9 of 188 (4.78%) patients treated with minimally invasive surgery and in 41 of 669 (6.12%) patients treated with open surgery. Infection occurred in 12 of 188 (6.38%) patients treated with minimally invasive surgery and in 22 of 669 (3.2%) patients treated with open surgery. The mechanical failure occurred in 1 of 188 (0.53%) patients treated with minimally invasive surgery and in 55 of 669 (8.22%) patients treated with open surgery. Reconstructive surgery occurred in 7 of 188 (3.72%) patients treated with minimally invasive surgery and in 95 of 669 (14.2%) patients treated with open surgery. Leaks occurred in 4 of 188 (2.12%) patients treated with minimally invasive surgery and in 6 of 669 (0.89%) patients treated with open surgery. The type of surgery was associated with a statistically significant increase in mechanical failure (p-value = 0.067) and infection (p-value = 0.021), and reconstructive surgery (p-value = 0.049). Out of the 857 participats in the study,469 were studied for less than five years and 388 were studied for more than five years.21 of 469 (4.4%) (p-value = 0.08) patients and 81 of 388 (20.8%) (p-value = 0.001) patients required reconstructive surgery. Erosion occurred in 23 of 469 (4.9%) (p-value = 0.01)patients with following time less than five years and in 27 of 388 (6.9%) (p-value = 0.001) patients with following time more than five years. CONCLUSION The use of artificial urinary sphincters in the treatment of UI causes complications such as atrophy, erosion, and infection; the amount of which is influenced by the surgical method and the duration of using the artificial urinary sphincter. It seems that the use of new surgical methods, such as laparoscopic surgery, is useful in reducing the incidence of complications.
Collapse
Affiliation(s)
- Pourya Shokri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ladan Kharaz
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niki Talebian
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mohsen Ziaee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Labbafinejad Medical Center, Pasdaran, Tehran, Iran
| | - Nasser Shakhssalim
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Labbafinejad Medical Center, Pasdaran, Tehran, Iran
| |
Collapse
|
2
|
Routzong MR, Martin LC, Rostaminia G, Abramowitch S. Urethral support in female urinary continence part 2: a computational, biomechanical analysis of Valsalva. Int Urogynecol J 2022; 33:551-561. [PMID: 33787951 DOI: 10.1007/s00192-021-04694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/10/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION AND HYPOTHESIS In Part 1, we observed urethral mechanics during Valsalva that oppose current continence theories. In this study, we utilize a finite element model to elucidate the role of supportive tissues on the urethra during Valsalva. By determining the sensitivity of urethral motion and deformations to variations in tissue stiffnesses, we formulate new hypotheses regarding mechanisms of urethral passive closure. METHODS Anatomy was segmented from a nulliparous, continent woman at rest. The model was tuned such that urethral motion during Valsalva matched that observed in that patient. Urethra and surrounding tissue material properties were varied using Latin hypercube sampling to perform a sensitivity analysis. As in Part 1, urethral length, proximal and distal swinging, and shape parameters were measured at peak Valsalva for 50 simulations, and partial rank correlation coefficients were calculated between all model inputs and outputs. Cumulative influence factors determined which tissue properties were meaningfully influential (≥ 0.5). RESULTS The material properties of the urethra, perineal membrane, bladder, and paraurethral connective tissues meaningfully influenced urethral motion, deformation, and shape. Reduction of the urethral stiffness and/or the perineal membrane soft constraint resulted in simulated urethral motions and shapes associated with stress urinary incontinence in Part 1. CONCLUSIONS The data from Parts 1 and 2 suggest that connective tissues guide the controlled swinging motion and deformation of the urethra needed for passive closure during Valsalva. The swinging and kinking quantified in Part 1 and simulated in Part 2 are inconsistent with current continence theories.
Collapse
Affiliation(s)
- Megan R Routzong
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Liam C Martin
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Ghazaleh Rostaminia
- Female Pelvic Medicine and Reconstructive Surgery (FPMRS), Division of Urogynecology, University of Chicago Pritzker School of Medicine, NorthShore University HealthSystem, Skokie, IL, USA
| | - Steven Abramowitch
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Ding DC, Li PC. Stem-cell therapy in stress urinary incontinence: A review. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_145_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Geng R, Knoll J, Harland N, Amend B, Enderle MD, Linzenbold W, Abruzzese T, Kalbe C, Kemter E, Wolf E, Schenk M, Stenzl A, Aicher WK. Replacing Needle Injection by a Novel Waterjet Technology Grants Improved Muscle Cell Delivery in Target Tissues. Cell Transplant 2022; 31:9636897221080943. [PMID: 35466714 PMCID: PMC9036380 DOI: 10.1177/09636897221080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current regimen to treat patients suffering from stress urinary incontinence often seems not to yield satisfactory improvement or may come with severe side effects. To overcome these hurdles, preclinical studies and clinical feasibility studies explored the potential of cell therapies successfully and raised high hopes for better outcome. However, other studies were rather disappointing. We therefore developed a novel cell injection technology to deliver viable cells in the urethral sphincter complex by waterjet instead of using injection needles. We hypothesized that the risk of tissue injury and loss of cells could be reduced by a needle-free injection technology. Muscle-derived cells were obtained from young male piglets and characterized. Upon expansion and fluorescent labeling, cells were injected into cadaveric tissue samples by either waterjet or injection needle. In other experiments, labeled cells were injected by waterjet in the urethra of living pigs and incubated for up to 7 days of follow-up. The analyses documented that the cells injected by waterjet in vitro were viable and proliferated well. Upon injection in live animals, cells appeared undamaged, showed defined cellular somata with distinct nuclei, and contained intact chromosomal DNA. Most importantly, by in vivo waterjet injections, a significantly wider cell distribution was observed when compared with needle injections (P < .05, n ≥ 12 samples). The success rates of waterjet cell application in living animals were significantly higher (≥95%, n = 24) when compared with needle injections, and the injection depth of cells in the urethra could be adapted to the need by adjusting waterjet pressures. We conclude that the novel waterjet technology injects viable muscle cells in tissues at distinct and predetermined depth depending on the injection pressure employed. After waterjet injection, loss of cells by full penetration or injury of the tissue targeted was reduced significantly in comparison with our previous studies employing needle injections.
Collapse
Affiliation(s)
- Ruizhi Geng
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Jasmin Knoll
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | | | - Tanja Abruzzese
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Elisabeth Kemter
- Department of Molecular Animal Breeding and Biotechnology, LMU Munich, Oberschleißheim, Germany.,Center for Innovative Medical Models, LMU Munich, Oberschleißheim, Germany
| | - Eckhard Wolf
- Department of Molecular Animal Breeding and Biotechnology, LMU Munich, Oberschleißheim, Germany.,Center for Innovative Medical Models, LMU Munich, Oberschleißheim, Germany
| | - Martin Schenk
- Department of Surgery, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Schmid FA, Williams JK, Kessler TM, Stenzl A, Aicher WK, Andersson KE, Eberli D. Treatment of Stress Urinary Incontinence with Muscle Stem Cells and Stem Cell Components: Chances, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3981. [PMID: 33921532 PMCID: PMC8069473 DOI: 10.3390/ijms22083981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Urinary incontinence (UI) is a major problem in health care and more than 400 million people worldwide suffer from involuntary loss of urine. With an increase in the aging population, UI is likely to become even more prominent over the next decades and the economic burden is substantial. Among the different subtypes of UI, stress urinary incontinence (SUI) is the most prevalent and focus of this review. The main underlying causes for SUI are pregnancy and childbirth, accidents with direct trauma to the pelvis or medical treatments that affect the pelvic floor, such as surgery or irradiation. Conservative approaches for the treatment of SUI are pelvic physiotherapy, behavioral and lifestyle changes, and the use of pessaries. Current surgical treatment options include slings, colposuspensions, bulking agents and artificial urinary sphincters. These treatments have limitations with effectiveness and bear the risk of long-term side effects. Furthermore, surgical options do not treat the underlying pathophysiological causes of SUI. Thus, there is an urgent need for alternative treatments, which are effective, minimally invasive and have only a limited risk for adverse effects. Regenerative medicine is an emerging field, focusing on the repair, replacement or regeneration of human tissues and organs using precursor cells and their components. This article critically reviews recent advances in the therapeutic strategies for the management of SUI and outlines future possibilities and challenges.
Collapse
Affiliation(s)
- Florian A. Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - J. Koudy Williams
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Karl-Erik Andersson
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
6
|
Linzenbold W, Jäger L, Stoll H, Abruzzese T, Harland N, Bézière N, Fech A, Enderle M, Amend B, Stenzl A, Aicher WK. Rapid and precise delivery of cells in the urethral sphincter complex by a novel needle-free waterjet technology. BJU Int 2020; 127:463-472. [PMID: 32940408 DOI: 10.1111/bju.15249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the therapy of stress urinary incontinence in a preclinical setting cells were injected into the urethrae of minipigs; however, cells injected by William's needle were frequently misplaced or lost; thus, we investigated if needle-free cell injections using a novel waterjet technology facilitates precise injections in the urethral sphincter complex. MATERIALS AND METHODS Porcine adipose tissue-derived stromal cells (pADSCs) were isolated from boars, expanded, labelled, and injected in the sphincter of female pigs by waterjet employing two different protocols. After incubation for 15 min or 3 days, the urethrae of the pigs were examined. Injected cells were visualised by imaging and fluorescence microscopy of tissue sections. DNA of injected male cells was verified by polymerase chain reaction (PCR) of the sex-determining region (SRY) gene. Cell injections by William's needle served as controls. RESULTS The new waterjet technology delivered pADSCs faster and with better on-site precision than the needle injections. Bleeding during or after waterjet injection or other adverse effects, such as swelling or urinary retention, were not observed. Morphologically intact pADSCs were detected in the urethrae of all pigs treated by waterjet. SRY-PCR of chromosomal DNA and detection of recombinant green fluorescent protein verified the injection of viable cells. In contrast, three of four pigs injected by William's needle displayed no or misplaced cells. CONCLUSION Transurethral injection of viable pADSCs by waterjet is a simple, fast, precise, and yet gentle new technology. This is the first proof-of-principle concept study providing evidence that a waterjet injects intact cells exactly in the tissue targeted in a preclinical in vivo situation. To further explore the clinical potential of the waterjet technology longer follow-up, as well as incontinence models have to be studied.
Collapse
Affiliation(s)
| | | | - Hartmut Stoll
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Tanja Abruzzese
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Nicolas Bézière
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Bastian Amend
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| |
Collapse
|
7
|
Andersson KE. Incontinence in Patients With Underactive Bladder. Int Neurourol J 2020; 24:293-294. [PMID: 33017900 PMCID: PMC7538294 DOI: 10.5213/inj.2040258.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Evaluation of the In Vitro Damage Caused by Lipid Factors on Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence. Int J Mol Sci 2020; 21:ijms21145045. [PMID: 32708907 PMCID: PMC7404394 DOI: 10.3390/ijms21145045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Human stem cell therapy for type 2 diabetes/obesity (T2D/O) complications is performed with stem cell autografts, exposed to the noxious T2D/O milieu, often with suboptimal results. We showed in the Obese Zucker (OZ) rat model of T2D/O that when their muscle-derived stem cells (MDSC) were from long-term T2D/O male rats, their repair efficacy for erectile dysfunction was impaired and were imprinted with abnormal gene- and miR-global transcriptional signatures (GTS). The damage was reproduced in vitro by short-term exposure of normal MDSC to dyslipidemic serum, causing altered miR-GTS, fat infiltration, apoptosis, impaired scratch healing, and myostatin overexpression. Similar in vitro alterations occurred with their normal counterparts (ZF4-SC) from the T2D/O rat model for female stress urinary incontinence, and with ZL4-SC from non-T2D/O lean female rats. In the current work we studied the in vitro effects of cholesterol and Na palmitate as lipid factors on ZF4-SC and ZL4-SC. A damage partially resembling the one caused by the female dyslipidemic serum was found, but differing between both lipid factors, so that each one appears to contribute specifically to the stem cell damaging effects of dyslipidemic serum in vitro and T2D/O in vivo, irrespective of gender. These results also confirm the miR-GTS biomarker value for MDSC damage.
Collapse
|
9
|
Liu G, Wu R, Yang B, Shi Y, Deng C, Atala A, Mou S, Criswell T, Zhang Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater 2020; 107:50-64. [PMID: 32044457 DOI: 10.1016/j.actbio.2020.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023]
Abstract
Traditional cell therapy technology relies on the maximum expansion of primary stem cells in vitro, through multiple passages and potential differentiation protocols, in order to generate the abundance of cells needed prior to transplantation in vivo. Implantation of in vitro over-expanded and pre-differentiated cells typically results in poor cell survival and reduced regeneration capacity for tissue repair in vivo. We hypothesized that implantation of primary stem cells, after a short time culture in vitro (passage number ≤p3), in combination with controlled release of relevant growth factors would improve in vivo cell viability, engraftment and tissue regeneration. The goal of this study was to determine whether the release of myogenic growth factors from a heparin-hyaluronic acid gel (hp-HA gel) could enhance in vivo cell survival, in-growth and myogenic differentiation of human urine-derived stem cells (USC) with a corresponding enhancement in graft vascularization, innervation and regenerative properties. Human USC were obtained from healthy adult donors (n = 6), expanded and then mixed with a hp-HA gel containing sets of growth factors known to enhance myogenesis (IGF1, HGF, PDGF-BB), neurogenesis (NGF, FGF) and angiogenesis (VEGF), or a cocktail with a combination of growth factors. Primary cultured USC (p3) mixed with the hp-HA gel and the various combinations of growth factors, were subcutaneously injected into athymic mice. In vivo cell survival, engraftment and functional differentiation within the host tissue were assessed. The implanted grafts containing USC and the growth factor cocktail showed the greatest number of surviving cells as well as increased numbers of cells that expressed myogenic and endothelial cell markers as compared to other groups 4 weeks after implantation. Moreover, the graft with USC and the growth factor cocktail showed increased numbers of blood vessels and infiltrating neurons. Thus, growth factors released in a controlled manner from an hp-HA gel containing USC efficiently improved in vivo cell survival and supported vascularization and myogenic differentiation within the grafts. This study provides evidence for the use of primary USC and growth factors in a hydrogel as a novel mode of cell therapy for the promotion of myogenic differentiation for the treatment of injured muscle tissue. STATEMENT OF SIGNIFICANCE: Cell therapies are a promising treatment option for neuromuscular dysfunction disorders. However, major limitations in cell retention and engraftment after implantation remain a hindrance to the use of stem cell therapy for the treatment of muscle injuries or diseased tissues. Implanted long-term in vitro cultured cells tend to demonstrate low rates of survival and tissue engraftment, lessened paracrine effects, and poor homing and differentiation. Human USC are an easily obtainable stem cell source that possess stem cell characteristics such as a robust proliferative potential, paracrine effects on neighboring cells, and multi-potential differentiation. In this study, we demonstrated that a combination of primary human USC with a cocktail of growth factors combined in a hyaluronic gel was optimal for cell survival and engraftment, including myogenic differentiation potential of USC, angiogenesis and host nerve fiber recruitment in vivo. The present study also demonstrated that the use of primary urine derived stem cells at early passages, without in vitro pre-differentiation, implanted in a hyaluronic-heparin hydrogel containing a cocktail of growth factors, provided an alternative safe site-specific delivery method for cell therapy.
Collapse
Affiliation(s)
- Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven Mou
- Anesthesiology-Pediatric ICU Anesthesia at WakeForest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Zhang X, Ruan Y, Wu AK, Zaid U, Villalta JD, Wang G, Banie L, Reed-Maldonado AB, Lin G, Lue TF. Delayed Treatment With Low-intensity Extracorporeal Shock Wave Therapy in an Irreversible Rat Model of Stress Urinary Incontinence. Urology 2020; 141:187.e1-187.e7. [PMID: 32283169 DOI: 10.1016/j.urology.2020.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of delayed low-intensity extracorporeal shock wave therapy (Li-ESWT) in a rat model of irreversible stress urinary incontinence (SUI). MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into 3 groups: sham control, vaginal balloon dilation + β-aminopropionitrile (BAPN; SUI group), and vaginal balloon dilation + BAPN + treatment with Li-ESWT (SUI-Li-ESWT group). An irreversible SUI model was developed by inhibiting the urethral structural recovery with BAPN daily for 5 weeks. Thereafter, in the SUI-Li-ESWT group, Li-ESWT was administered twice per week for 2 weeks. After a 1-week washout, all 24 rats were evaluated with functional and histologic studies at 17 weeks of age. Endogenous progenitor cells were detected via the EdU-labeling method. RESULTS Functional analysis with leak point pressure testing showed that the SUI-Li-ESWT group had significantly higher leak point pressures compared with untreated rats. Increased urethral and vaginal smooth and striated muscle content and increased thickness of the vaginal wall were noted in the SUI-Li-ESWT group. The SUI group had significantly decreased neuronal nitric oxide /tyrosine hydroxylase positive nerves ratio in the smooth muscle layers of the urethra, while the SUI-Li-ESWT group had neuronal nitric oxide/tyrosine hydroxylase+ nerves ratio similar to that of the control group. The continuality of urothelial cell lining was also improved in the SUI-Li-ESWT group. In addition, there were significantly increased EdU-positive cells in the SUI-Li-ESWT group. CONCLUSION Li-ESWT appears to increase smooth muscle content in the urethra and the vagina, increase the thickness of urethral wall, improve striated muscle content and neuromuscular junctions, restore the integrity of the urothelium, and increase the number of EdU-retaining progenitor cells in the urethral wall.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Yajun Ruan
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Alex K Wu
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Uwais Zaid
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Jaqueline D Villalta
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guifang Wang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Lia Banie
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Amanda B Reed-Maldonado
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guiting Lin
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Tom F Lue
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
11
|
Kaufman MR. Contemporary application of autologous muscle-derived cells for urinary sphincter regeneration. World J Urol 2019; 38:2095-2099. [DOI: 10.1007/s00345-019-03018-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
|
12
|
Kovanecz I, Gelfand R, Lin G, Sharifzad S, Ohanian A, Ricks R, Lue T, Gonzalez-Cadavid NF. Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence Are Damaged by In Vitro Exposure to its Dyslipidemic Serum, Predicting Inadequate Repair Capacity In Vivo. Int J Mol Sci 2019; 20:ijms20164044. [PMID: 31430893 PMCID: PMC6720976 DOI: 10.3390/ijms20164044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Female stress urinary incontinence (FSUI) is prevalent in women with type 2 diabetes/obesity (T2D/O), and treatment is not optimal. Autograph stem cell therapy surprisingly has poor efficacy. In the male rat model of T2D/O, it was demonstrated that epigenetic changes, triggered by long-term exposure to the dyslipidemic milieu, led to abnormal global transcriptional signatures (GTS) of genes and microRNAs (miR), and impaired the repair capacity of muscle-derived stem cells (MDSC). This was mimicked in vitro by treatment of MDSC with dyslipidemic serum or lipid factors. The current study aimed to predict whether these changes also occur in stem cells from female 12 weeks old T2D/O rats, a model of FSUI. MDSCs from T2D/O (ZF4-SC) and normal female rats (ZL4-SC) were treated in vitro with either dyslipidemic serum (ZFS) from late T2D/O 24 weeks old female Zucker fatty (ZF) rats, or normal serum (ZLS) from 24 weeks old female Zucker lean (ZL) rats, for 4 days and subjected to assays for fat deposition, apoptosis, scratch closing, myostatin, interleukin-6, and miR-GTS. The dyslipidemic ZFS affected both female stem cells more severely than in the male MDSC, with some gender-specific differences in miR-GTS. The changes in miR-GTS and myostatin/interleukin-6 balance may predict in vivo noxious effects of the T2D/O milieu that might impair autograft stem cell (SC) therapy for FSUI, but this requires future studies.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Guiting Lin
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Sheila Sharifzad
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Alec Ohanian
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Randy Ricks
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Tom Lue
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA.
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA.
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA.
| |
Collapse
|