1
|
Cellini B, Baum MA, Frishberg Y, Groothoff JW, Harris PC, Hulton SA, Knauf F, Knight J, Lieske JC, Lowther WT, Moochhala S, Nazzal L, Tasian GE, Whittamore JM, Sas DJ. Opportunities in Primary and Enteric Hyperoxaluria at the Cross-Roads Between the Clinic and Laboratory. Kidney Int Rep 2024; 9:3083-3096. [PMID: 39534212 PMCID: PMC11551133 DOI: 10.1016/j.ekir.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperoxaluria is a condition in which there is a pathologic abundance of oxalate in the urine through either hepatic overproduction (primary hyperoxaluria [PH]) or excessive enteric absorption of dietary oxalate (enteric hyperoxaluria [EH]). Severity can vary with the most severe forms causing kidney failure and extrarenal manifestations. To address the current challenges and innovations in hyperoxaluria, the 14th International Hyperoxaluria Workshop convened in Perugia, Italy, bringing together international experts for focused presentation and discussion. The objective of the following report was to disseminate an overview of the proceedings and provide substrate for further thought. The format of this paper follows the format of the meeting, addressing, "PH type 1" (PH1) first, followed by "surgery, genetics, and ethics in PH", then "PH types 2 and 3," (PH2 and PH3) and, finally, "EH." Each session began with presentations of the current clinical challenges, followed by discussion of the latest advances in basic and translational research, and concluded with interactive discussions about prioritizing the future of research in the field to best serve the need of the patients.
Collapse
Affiliation(s)
- Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michelle A. Baum
- Department of Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Peter C. Harris
- Division of Nephrology and Hypertension and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sally A. Hulton
- Department of Nephrology, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Felix Knauf
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - John Knight
- Department of Urology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C. Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - W. Todd Lowther
- Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Lama Nazzal
- Nephrology Division, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Gregory E. Tasian
- Division of Pediatric Urology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan M. Whittamore
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research UT Southwestern Medical Center, Dallas, Texas, USA
| | - David J. Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic Children’s Center, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Cao W, Zhang J, Yu S, Gan X, An R. N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis. Urolithiasis 2024; 52:46. [PMID: 38520518 DOI: 10.1007/s00240-023-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 03/25/2024]
Abstract
This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-β/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-β/SMAD pathway related proteins (TGF-β1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-β1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-β/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jingbo Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China.
| |
Collapse
|
3
|
Bons J, Tadeo A, Scott GK, Teramayi F, Tanner JJ, Schilling B, Benz CC, Ellerby LM. Therapeutic targeting of HYPDH/PRODH2 with N-propargylglycine offers a Hyperoxaluria treatment opportunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166848. [PMID: 37586438 PMCID: PMC10854995 DOI: 10.1016/j.bbadis.2023.166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
N-propargylglycine prevents 4-hydroxyproline catabolism in mouse liver and kidney. N-propargylglycine is a novel suicide inhibitor of PRODH2 and induces mitochondrial degradation of PRODH2. PRODH2 is selectively expressed in liver and kidney and contributes to primary hyperoxaluria (PH). Preclinical evaluation of N-propargylglycine efficacy as a new PH therapeutic is warranted.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Ada Tadeo
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Gary K. Scott
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - John J. Tanner
- Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
4
|
Wang X, Zhang X, Wang L, Zhang R, Zhang Y, Cao L. Purslane-induced oxalate nephropathy: case report and literature review. BMC Nephrol 2023; 24:207. [PMID: 37443012 PMCID: PMC10347717 DOI: 10.1186/s12882-023-03236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The kidney is particularly vulnerable to toxins due to its abundant blood supply, active tubular reabsorption, and medullary interstitial concentration. Currently, calcium phosphate-induced and calcium oxalate-induced nephropathies are the most common crystalline nephropathies. Hyperoxaluria may lead to kidney stones and progressive kidney disease due to calcium oxalate deposition leading to oxalate nephropathy. Hyperoxaluria can be primary or secondary. Primary hyperoxaluria is an autosomal recessive disease that usually develops in childhood, whereas secondary hyperoxaluria is observed following excessive oxalate intake or reduced excretion, with no difference in age of onset. Oxalate nephropathy may be overlooked, and the diagnosis is often delayed or missed owning to the physician's inadequate awareness of its etiology and pathogenesis. Herein, we discuss the pathogenesis of hyperoxaluria with two case reports, and our report may be helpful to make appropriate treatment plans in clinical settings in the future. CASE PRESENTATION We report two cases of acute kidney injury, which were considered to be due to oxalate nephropathy in the setting of purslane (portulaca oleracea) ingestion. The two patients were elderly and presented with oliguria, nausea, vomiting, and clinical manifestations of acute kidney injury requiring renal replacement therapy. One patient underwent an ultrasound-guided renal biopsy, which showed acute tubulointerstitial injury and partial tubular oxalate deposition. Both patients underwent hemodialysis and were discharged following improvement in creatinine levels. CONCLUSIONS Our report illustrates two cases of acute oxalate nephropathy in the setting of high dietary consumption of purslane. If a renal biopsy shows calcium oxalate crystals and acute tubular injury, oxalate nephropathy should be considered and the secondary causes of hyperoxaluria should be eliminated.
Collapse
Affiliation(s)
- Xiangtuo Wang
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China.
| | - Xiaoyan Zhang
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China
| | - Liyuan Wang
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China
| | - Ruiying Zhang
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China
| | - Yingxuan Zhang
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China
| | - Lei Cao
- Department of Nephrology, Harrison International Peace Hospital, Renmin Road, Hengshui, 053000, Hebei Province, People's Republic of China.
| |
Collapse
|
5
|
Stepanova N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives. Biomedicines 2023; 11:1654. [PMID: 37371749 PMCID: PMC10296321 DOI: 10.3390/biomedicines11061654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant global public health concern associated with high morbidity and mortality rates. The maintenance of oxalate homeostasis plays a critical role in preserving kidney health, particularly in the context of CKD. Although the relationship between oxalate and kidney stone formation has been extensively investigated, our understanding of oxalate homeostasis in non-stone-forming CKD remains limited. This review aims to present an updated analysis of the existing literature, focusing on the intricate mechanisms involved in oxalate homeostasis in patients with CKD. Furthermore, it explores the key factors that influence oxalate accumulation and discusses the potential role of oxalate in CKD progression and prognosis. The review also emphasizes the significance of the gut-kidney axis in CKD oxalate homeostasis and provides an overview of current therapeutic strategies, as well as potential future approaches. By consolidating important findings and perspectives, this review offers a comprehensive understanding of the present knowledge in this field and identifies promising avenues for further research.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution «Institute of Nephrology of the National Academy of Medical Sciences of Ukraine», 04050 Kyiv, Ukraine
| |
Collapse
|
6
|
Naaman E, Malul N, Safuri S, Bar N, Pollack S, Magen D, Leibu R, Perlman I, Zayit-Soudry S. Reduced Electroretinogram Responses in Morphologically Normal Retina in Patients with Primary Hyperoxaluria Type 1. OPHTHALMOLOGY SCIENCE 2023; 3:100268. [PMID: 36909147 PMCID: PMC9996110 DOI: 10.1016/j.xops.2022.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Purpose To describe ocular findings in individuals with primary hyperoxaluria type 1 (PH1), focusing on the correlations between retinal anatomy and retinal function. To characterize the retinal alterations that occur at different disease stages by evaluating individuals with diverse degrees of renal impairment associated with PH1. Design A cross-sectional study. Participants Patients diagnosed with PH1 based on clinical criteria and genetic testing, treated in the Pediatric Nephrology Unit of the Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel between 2013 and 2021. Methods The ophthalmological assessment included a slit-lamp biomicroscopy of the anterior and posterior segment or indirect ophthalmoscopy. Electroretinography was employed for assessment of the retinal function, and retinal imaging included spectral-domain OCT and fundus autofluorescence. A systematic evaluation of the disease stage was based on clinical criteria including physical examination, purposeful imaging (X-ray, echocardiography, and US abdomen), and laboratory tests as needed. Main Outcome Measures Anatomical and functional assessment of the retina in patients with PH1, and the relationship between retinal dysfunction and kidney impairment. Results A total of 16 eyes were examined in the study of 8 children ranging in age from 4 to 19 years. Four eyes (25%) showed normal structural and functional retinal findings, 8 eyes (50%) presented functional impairment in the absence of pathological structural findings, and 4 eyes (25%) had advanced retinal damage that manifested as significant morphological and functional impairment. There was no direct relationship between the severity of the renal disease and the severity of the retinal phenotype. Conclusions Subjects with PH1 present varying severity levels of the retinal phenotype, with possible discrepancy between the clinical retinal morphology and the retinal function noted on electroretinography. These findings raise questions about the molecular basis of the retinal manifestations in PH1. The presence of functional impairment in the absence of evident crystal deposition in the retina suggests that, in addition to oxalate crystal accumulation, other biomolecular processes may play a role in the development of retinopathy.
Collapse
Affiliation(s)
- Efrat Naaman
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Netta Malul
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shadi Safuri
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Nitai Bar
- Department of Radiology, Rambam Health Care Campus, Haifa, Israel
| | - Shirley Pollack
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Nephrology Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Daniella Magen
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Nephrology Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Rina Leibu
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Ido Perlman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Malieckal DA, Ganesan C, Mendez DA, Pao AC. Breaking the Cycle of Recurrent Calcium Stone Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:164-176. [PMID: 36868731 PMCID: PMC9993408 DOI: 10.1053/j.akdh.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 03/05/2023]
Abstract
Calcium stones are common and recurrent in nature, yet few therapeutic tools are available for secondary prevention. Personalized approaches for stone prevention have been informed by 24-hour urine testing to guide dietary and medical interventions. However, current evidence is conflicting about whether an approach guided by 24-hour urine testing is more effective than a generic one. The available medications for stone prevention, namely thiazide diuretics, alkali, and allopurinol, are not always prescribed consistently, dosed correctly, or tolerated well by patients. New treatments on the horizon hold the promise of preventing calcium oxalate stones by degrading oxalate in the gut, reprogramming the gut microbiome to reduce oxalate absorption, or knocking down expression of enzymes involved in hepatic oxalate production. New treatments are also needed to target Randall's plaque, the root cause of calcium stone formation.
Collapse
Affiliation(s)
- Deepa A. Malieckal
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Calyani Ganesan
- Stanford University School of Medicine, Department of Medicine, Palo Alto, CA
| | | | - Alan C. Pao
- Stanford University School of Medicine, Department of Medicine, Palo Alto, CA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
8
|
Sawyer K, Leahy S, Wood KD. Progress with RNA Interference for the Treatment of Primary Hyperoxaluria. BioDrugs 2022; 36:437-441. [PMID: 35731461 DOI: 10.1007/s40259-022-00539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
Abstract
Over the last few years, US Food and Drug Administration-approved drugs using RNA interference have come to the market. Many have treated liver-specific diseases utilizing N-acetyl galactosamine conjugation because of its effective delivery and limited off-target effects. The autosomal recessive disorder primary hyperoxaluria, specifically type 1, has benefited from these developments. Primary hyperoxaluria arises from mutations in the enzymes involved in endogenous oxalate synthesis. The severity of disease varies but can result in kidney failure and systemic oxalosis. Until recently, the treatment options were limited and focused primarily on supportive treatments, pyridoxine use in a subset of patients with primary hyperoxaluria type 1, and liver-kidney transplants in those who progressed to kidney failure. Two genes have been targeted with RNA interference; lumasiran targets glycolate oxidase and nedosiran targets lactate dehydrogenase A. Lumasiran was recently approved in the treatment of primary hyperoxaluria type 1 and nedosiran is in the approval process. Unfortunately, despite initial hopes that nedosiran may also be a treatment option for primary hyperoxaluria types 2 and 3, initial data suggest otherwise. The use of RNA interference liver-specific targeting for the treatment of primary hyperoxaluria type 1 will likely transform the natural history of the disease.
Collapse
Affiliation(s)
- Kathryn Sawyer
- Marnix E. Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Leahy
- Marnix E. Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle D Wood
- Department of Urology, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Estève E, Buob D, Jamme F, Jouanneau C, Kascakova S, Haymann JP, Letavernier E, Galmiche L, Ronco P, Daudon M, Bazin D, Réfrégiers M. Detection and localization of calcium oxalate in kidney using synchrotron deep ultraviolet fluorescence microscopy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:214-223. [PMID: 34985438 PMCID: PMC8733991 DOI: 10.1107/s1600577521011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/28/2021] [Indexed: 05/14/2023]
Abstract
Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76-100) and a 73% sensitivity (43-90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.
Collapse
Affiliation(s)
- Emmanuel Estève
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - David Buob
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Slavka Kascakova
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Jean Philippe Haymann
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Louise Galmiche
- Pathology Department, Necker-Enfants Malades Hospital, Public Assistance-Hospitals of Paris, Université Paris, 75015 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, CNRS UMR8502, Université Paris Saclay, Orsay, France
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| |
Collapse
|
10
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Pozdzik A, David C, Vekeman J, Tielens F, Daudon M. Lanthanum carbonate to control plasma and urinary oxalate level in type 1 primary hyperoxaluria? IJU Case Rep 2021; 4:235-238. [PMID: 34258537 PMCID: PMC8255283 DOI: 10.1002/iju5.12296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The therapy to reduce urinary oxalate excretion in primary hyperoxaluria type 1 is still required. CASE PRESENTATION A 37-year-old hemodialyzed man suffered from systemic oxalosis secondary to primary hyperoxaluria type 1 exhibited a drastic plasma oxalate decrease from 110 to 22 µmol/L two months after adjunction of lanthanum carbonate to classical treatment (intensive hemodialysis with pyridoxine). A 34-year-old woman with normal kidney function presented 10 years of bilateral kidney stones due to primary hyperoxaluria type 1 [hyperoxaluria (109.2 mg/24 h), plasma oxalate (56.0 µmol/L)]. The oxalate level remained uncontrolled despite of low oxalate-normal calcium diet, pyridoxine and increased water intake though the lanthanum carbonate adjunction resulted in significant decrease in plasma oxalate and oxaluria. CONCLUSION We report the lanthanum efficacy in reducing circulating and urinary oxalate levels in type 1 primary hyperoxaluria. Possible mechanism of observed falls in oxalate concentration would be a decrease in the intestinal absorption of oxalate.
Collapse
Affiliation(s)
- Agnieszka Pozdzik
- Department of Nephrology and DialysisKidney Stone ClinicCentre Hospitalier UniversitaireBrugmann HospitalBrusselsBelgium
- Faculty of MedicineUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Cristina David
- Department of Nephrology and DialysisKidney Stone ClinicCentre Hospitalier UniversitaireBrugmann HospitalBrusselsBelgium
| | - Jelle Vekeman
- General Chemistry (ALGC)Materials Modelling GroupVrije Universiteit BrusselsBrusselsBelgium
| | - Frederik Tielens
- General Chemistry (ALGC)Materials Modelling GroupVrije Universiteit BrusselsBrusselsBelgium
| | - Michel Daudon
- Service des explorations fonctionnelles multidisciplinairesTenon HospitalAP_HPParisFrance
- INSERM UMRS 1155Université Pierre et Marie Curie‐Paris VI‐Sorbonne UniversitésParisFrance
| |
Collapse
|
12
|
Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, Fargue S. Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients 2020; 13:nu13010062. [PMID: 33379176 PMCID: PMC7823532 DOI: 10.3390/nu13010062] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Kidney stone disease is increasing in prevalence, and the most common stone composition is calcium oxalate. Dietary oxalate intake and endogenous production of oxalate are important in the pathophysiology of calcium oxalate stone disease. The impact of dietary oxalate intake on urinary oxalate excretion and kidney stone disease risk has been assessed through large cohort studies as well as smaller studies with dietary control. Net gastrointestinal oxalate absorption influences urinary oxalate excretion. Oxalate-degrading bacteria in the gut microbiome, especially Oxalobacter formigenes, may mitigate stone risk through reducing net oxalate absorption. Ascorbic acid (vitamin C) is the main dietary precursor for endogenous production of oxalate with several other compounds playing a lesser role. Renal handling of oxalate and, potentially, renal synthesis of oxalate may contribute to stone formation. In this review, we discuss dietary oxalate and precursors of oxalate, their pertinent physiology in humans, and what is known about their role in kidney stone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ross P. Holmes
- Correspondence: ; Tel.: +1-(205)-996-8765; Fax: +1-(205)-934-4933
| | | |
Collapse
|