1
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
2
|
Boyd RA, Majumder S, Stiban J, Mavodza G, Straus AJ, Kempelingaiah SK, Reddy V, Hannun YA, Obeid LM, Senkal CE. The heat shock protein Hsp27 controls mitochondrial function by modulating ceramide generation. Cell Rep 2023; 42:113081. [PMID: 37689067 PMCID: PMC10591768 DOI: 10.1016/j.celrep.2023.113081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Sphingolipids have key functions in membrane structure and cellular signaling. Ceramide is the central molecule of the sphingolipid metabolism and is generated by ceramide synthases (CerS) in the de novo pathway. Despite their critical function, mechanisms regulating CerS remain largely unknown. Using an unbiased proteomics approach, we find that the small heat shock protein 27 (Hsp27) interacts specifically with CerS1 but not other CerS. Functionally, our data show that Hsp27 acts as an endogenous inhibitor of CerS1. Wild-type Hsp27, but not a mutant deficient in CerS1 binding, inhibits CerS1 activity. Additionally, silencing of Hsp27 enhances CerS1-generated ceramide accumulation in cells. Moreover, phosphorylation of Hsp27 modulates Hsp27-CerS1 interaction and CerS1 activity in acute stress-response conditions. Biologically, we show that Hsp27 knockdown impedes mitochondrial function and induces lethal mitophagy in a CerS1-dependent manner. Overall, we identify an important mode of CerS1 regulation and CerS1-mediated mitophagy through protein-protein interaction with Hsp27.
Collapse
Affiliation(s)
- Rowan A Boyd
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Saurav Majumder
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Department of Biology and Biochemistry, Birzeit University, Ramallah, Palestine
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Sachin K Kempelingaiah
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Varun Reddy
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23398, USA.
| |
Collapse
|
3
|
Youness RA, Gohar A, Kiriacos CJ, El-Shazly M. Heat Shock Proteins: Central Players in Oncological and Immuno-Oncological Tracks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:193-203. [PMID: 36038808 DOI: 10.1007/5584_2022_736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heat shock proteins (HSPs) are a group of proteins that promote protein folding, inhibit denaturation of cellular proteins, and maintain other proteins' functional activities when cells are subjected to stress and/or high temperature. HSP classification is generally based on their molecular weights into large and small HSP. The family of small HSPs includes HSPs 27, 40, 60, 70, and 90. The potential roles of HSP27 and HSP70 are quite evident in different solid malignancies, including breast, colorectal, pancreatic, and liver cancers. In this chapter, the authors focus on HSP27 and HSP70 signaling in oncology and their role in different solid malignancies as well as they shed light on the novel role of HSP70 and HSP90 in the immune-oncology field.
Collapse
Affiliation(s)
- Rana A Youness
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt.
| | - Asmaa Gohar
- Extract and Allergen Evaluation Lab, Central Adminstration of Biological, Innovation Products and Clinical Studies, Egypt Drug Authority, Cairo, Egypt
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt
| | - Mohamed El-Shazly
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
5
|
Li Y, Xia C, Yao G, Zhang X, Zhao J, Gao X, Yong J, Wang H. Protective effects of liquiritin on UVB-induced skin damage in SD rats. Int Immunopharmacol 2021; 97:107614. [PMID: 33892299 DOI: 10.1016/j.intimp.2021.107614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Overexposure to ultraviolet B (UVB) rays can cause damage to the skin. Liquiritin has a variety of pharmacological effects, such as anti-inflammatory and antioxidant. In the present study, the effect of liquiritin on UVB irradiated rat skin was investigated. Results showed that UVB irradiation caused erythema and wrinkles on the skin surface, as well as thickening and loss of elasticity of the epidermis and a significant increase in the level of ROS in the skin tissue. At the same time, western blot detected an increase in nuclear factor kappa-B (NF-κB) and matrix metalloproteinases (MMPs) and Elisa also detected an increase in pro-inflammatory factors. Therefore, we hypothesized that UVB irradiation-induced damage is associated with inflammation. Interestingly, application of liquiritin to exposed skin of rats reduced the increase in ROS, pro-inflammatory factors, and MMPs caused by UVB irradiation and increased the levels of Sirtuin3 (SIRT3) and Collagen α1. In addition, after intraperitoneal injection of the SIRT3 inhibitor 3-TYP in rats, the protective effect of liquiritin against UVB damage was found to be diminished. These results suggested that promotion of SIRT3 with liquiritin inhibits UVB-induced production of pro-inflammatory mediators, possibly acting through the SIRT3/ROS/NF-κB pathway. In conclusion, this study suggests that liquiritin is an effective drug candidate for the prevention of UVB damage.
Collapse
Affiliation(s)
- Yuanjie Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Guangda Yao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China; Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China; Key Laboratory of Hui Ethnic Medicine Modernisation, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
7
|
Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019; 11:cancers11081195. [PMID: 31426426 PMCID: PMC6721579 DOI: 10.3390/cancers11081195] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 27 (HSP27), induced by heat shock, environmental, and pathophysiological stressors, is a multi-functional protein that acts as a protein chaperone and an antioxidant. HSP27 plays a significant role in the inhibition of apoptosis and actin cytoskeletal remodeling. HSP27 is upregulated in many cancers and is associated with a poor prognosis, as well as treatment resistance, whereby cells are protected from therapeutic agents that normally induce apoptosis. This review highlights the most recent findings and role of HSP27 in cancer, as well as the strategies for using HSP27 inhibitors for therapeutic purposes.
Collapse
|
8
|
Spigel DR, Shipley DL, Waterhouse DM, Jones SF, Ward PJ, Shih KC, Hemphill B, McCleod M, Whorf RC, Page RD, Stilwill J, Mekhail T, Jacobs C, Burris HA, Hainsworth JD. A Randomized, Double-Blinded, Phase II Trial of Carboplatin and Pemetrexed with or without Apatorsen (OGX-427) in Patients with Previously Untreated Stage IV Non-Squamous-Non-Small-Cell Lung Cancer: The SPRUCE Trial. Oncologist 2019; 24:e1409-e1416. [PMID: 31420467 DOI: 10.1634/theoncologist.2018-0518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND This randomized, double-blinded, phase II trial evaluated the efficacy of carboplatin and pemetrexed plus either apatorsen, an antisense oligonucleotide targeting heat shock protein (Hsp) 27 mRNA, or placebo in patients with previously untreated metastatic nonsquamous non-small cell lung cancer (NSCLC). METHODS Patients were randomized 1:1 to Arm A (carboplatin/pemetrexed plus apatorsen) or Arm B (carboplatin/pemetrexed plus placebo). Treatment was administered in 21-day cycles, with restaging every two cycles, until progression or intolerable toxicity. Serum Hsp27 levels were analyzed at baseline and during treatment. The primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), objective response rate, and toxicity. RESULTS The trial enrolled 155 patients (median age 66 years; 44% Eastern Cooperative Oncology Group performance status 0). Toxicities were similar in the 2 treatment arms; cytopenias, nausea, vomiting, and fatigue were the most frequent treatment-related adverse events. Median PFS and OS were 6.0 and 10.8 months, respectively, for Arm A, and 4.9 and 11.8 months for Arm B (differences not statistically significant). Overall response rates were 27% for Arm A and 32% for Arm B. Sixteen patients (12%) had high serum levels of Hsp27 at baseline. In this small group, patients who received apatorsen had median PFS of 10.8 months, and those who received placebo had median PFS 4.8 months. CONCLUSION The addition of apatorsen to carboplatin and pemetrexed was well tolerated but did not improve outcomes in patients with metastatic nonsquamous NSCLC cancer in the first-line setting. IMPLICATIONS FOR PRACTICE This randomized, double-blinded, phase II trial evaluated the efficacy of carboplatin and pemetrexed plus either apatorsen, an antisense oligonucleotide targeting heat shock protein 27 mRNA, or placebo in patients with previously untreated metastatic nonsquamous non-small cell lung cancer (NSCLC). The addition of apatorsen to carboplatin and pemetrexed was well tolerated but did not improve outcomes in patients with metastatic nonsquamous NSCLC cancer in the first-line setting.
Collapse
Affiliation(s)
- David R Spigel
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Dianna L Shipley
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - David M Waterhouse
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Oncology Hematology Care, Cincinnati, Ohio, USA
| | | | - Patrick J Ward
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Oncology Hematology Care, Cincinnati, Ohio, USA
| | - Kent C Shih
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Brian Hemphill
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Michael McCleod
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Florida Cancer Specialists, Ft. Myers Florida, USA
| | - Robert C Whorf
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Florida Cancer Specialists, Bradenton, Florida, USA
| | - Ray D Page
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Center for Cancer and Blood Disorders, Ft. Worth, Texas, USA
| | - Joseph Stilwill
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Research Medical Center, Kansas City, Missouri, USA
| | - Tarek Mekhail
- Florida Hospital Cancer Institute, Orlando, Florida, USA
| | | | - Howard A Burris
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - John D Hainsworth
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Fendrich V, Jendryschek F, Beeck S, Albers M, Lauth M, Esni F, Heeger K, Dengler J, Slater EP, Holler JPN, Baier A, Bartsch DK, Waldmann J. Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury. Oncogene 2018; 37:1845-1856. [PMID: 29367759 DOI: 10.1038/s41388-017-0100-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/25/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer (PDAC) is one of the most dismal of human malignancies. Inhibiting or delaying the progression of precursor lesions of PDAC, pancreatic intraepthial neoplasia (PanINs), to invasive cancer, would be a major step. In the present study, we used a transgenic murine model of pancreatic cancer to evaluate the impact of a conditional knockout of the transcription factor Snail1, a major factor in epithelial-to-mesenchymal transition, on acinar-to-ductal formation and on PanIN progression. By interbreeding conditional LsL-Snail floxf/wt ; LsL-Kras G12D and Pdx1-Cre strains, we obtained LsL-Kras G12D ;Pdx1-Cre(KP) mice, Snail1 heterozygous knockout LsL-Kras G12D ; LsL-Snail flox/- ;Pdx1-Cre(KPShet) mice or Snail1 homozygous knockout LsL-Kras G12D ;LsL-Snail flox/flox ;Pdx1-Cre(KPS) mice. Mice were then followed in a longitudinal study for 2, 4, 6, 8, 10, and 12 months. Furthermore, in mice with a genetic or pharmacological inhibition of Snail1, using the Snail1 inhibitor GN25, a model of pancreatic injury by administration of cerulein was introduced to evaluate ADM formation in this setting. A translational approach with a tissue microarray (TMA) of human PanINs and an in vivo nude mouse platform to test GN25 in human pancreatic adenocarcinoma was then adopted. Quantification of PanINs showed delayed initiation and progression of PanIN lesions at all ages in both homozygous and heterozygous Snaildel1;Pdx-1-Cre;LSL-KrasG12D/+-Mice. PanINs at TMA revealed snail expression in the majority of cases. GN25 showed growth inhibition in 2/2 human pancreatic adenocarcinomas using a nude mice in vivo platform. Genetic and pharmacologic abrogation of Snail1 signaling in exocrine pancreas impairs development of acinar-to-ductal metaplasia following cerulein-mediated pancreatic injury. The present study suggests a fundamental new approach to delay the progression of PDAC.
Collapse
Affiliation(s)
- Volker Fendrich
- Department of Surgery, University of Marburg, Marburg, Germany.
| | | | - Saskia Beeck
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Max Albers
- Department of Surgery, University of Marburg, Marburg, Germany
| | | | - Farzad Esni
- Department of Surgery, John G. Rangos Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin Heeger
- Department of Internal Medicine, Division of Gastroenterology University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Janina Dengler
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Emily P Slater
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Julia P N Holler
- Department of Surgery, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Aninja Baier
- Department of Surgery, University of Marburg, Marburg, Germany
| | | | - Jens Waldmann
- Department of Surgery, University of Marburg, Marburg, Germany
| |
Collapse
|
10
|
Ko AH, Murphy PB, Peyton JD, Shipley DL, Al-Hazzouri A, Rodriguez FA, Womack MS, Xiong HQ, Waterhouse DM, Tempero MA, Guo S, Lane CM, Earwood C, DeBusk LM, Bendell JC. A Randomized, Double-Blinded, Phase II Trial of Gemcitabine and Nab-Paclitaxel Plus Apatorsen or Placebo in Patients with Metastatic Pancreatic Cancer: The RAINIER Trial. Oncologist 2017; 22:1427-e129. [PMID: 28935773 PMCID: PMC5728028 DOI: 10.1634/theoncologist.2017-0066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
Abstract
LESSONS LEARNED The addition of the heat shock protein 27 (Hsp27)-targeting antisense oligonucleotide, apatorsen, to a standard first-line chemotherapy regimen did not result in improved survival in unselected patients with metastatic pancreatic cancer.Findings from this trial hint at the possible prognostic and predictive value of serum Hsp27 that may warrant further investigation. BACKGROUND This randomized, double-blinded, phase II trial evaluated the efficacy of gemcitabine/nab-paclitaxel plus either apatorsen, an antisense oligonucleotide targeting heat shock protein 27 (Hsp27) mRNA, or placebo in patients with metastatic pancreatic cancer. METHODS Patients were randomized 1:1 to Arm A (gemcitabine/nab-paclitaxel plus apatorsen) or Arm B (gemcitabine/nab-paclitaxel plus placebo). Treatment was administered in 28-day cycles, with restaging every 2 cycles, until progression or intolerable toxicity. Serum Hsp27 levels were analyzed at baseline and on treatment. The primary endpoint was overall survival (OS). RESULTS One hundred thirty-two patients were enrolled, 66 per arm. Cytopenias and fatigue were the most frequent grade 3/4 treatment-related adverse events for both arms. Median progression-free survival (PFS) and OS were 2.7 and 5.3 months, respectively, for arm A, and 3.8 and 6.9 months, respectively, for arm B. Objective response rate was 18% for both arms. Patients with high serum level of Hsp27 represented a poor-prognosis subgroup who may have derived modest benefit from addition of apatorsen. CONCLUSION Addition of apatorsen to chemotherapy does not improve outcomes in unselected patients with metastatic pancreatic cancer in the first-line setting, although a trend toward prolonged PFS and OS in patients with high baseline serum Hsp27 suggests this therapy may warrant further evaluation in this subgroup.
Collapse
Affiliation(s)
- Andrew H Ko
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | | | - James D Peyton
- Tennessee Oncology, PLLC/SCRI, Nashville, Tennessee, USA
| | | | | | | | - Mark S Womack
- Tennessee Oncology, PLLC/SCRI, Chattanooga, Tennessee, USA
| | - Henry Q Xiong
- The Center for Cancer and Blood Disorders/SCRI, Fort Worth, Texas, USA
| | | | - Margaret A Tempero
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Shuangli Guo
- Sarah Cannon Research Institute (SCRI), Nashville, Tennessee, USA
| | - Cassie M Lane
- Sarah Cannon Research Institute (SCRI), Nashville, Tennessee, USA
| | - Chris Earwood
- Sarah Cannon Research Institute (SCRI), Nashville, Tennessee, USA
| | - Laura M DeBusk
- Sarah Cannon Research Institute (SCRI), Nashville, Tennessee, USA
| | | |
Collapse
|
11
|
Tanpure S, Boyineini J, Gnanamony M, Antony R, Fernández KS, Libes J, Lin J, Pinson D, Joseph PA, Gondi CS. SPARC overexpression suppresses radiation-induced HSP27 and induces the collapse of mitochondrial Δψ in neuroblastoma cells. Oncol Lett 2017; 13:4602-4610. [PMID: 28599461 PMCID: PMC5453037 DOI: 10.3892/ol.2017.6075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the cause of >15% of cancer-associated mortality in children in the USA. Despite aggressive treatment regimens, the long-term survival rate for these children remains at <40%. The current study demonstrates that secreted protein acidic and rich in cysteine (SPARC) suppresses radiation-induced expression of heat shock protein 27 (HSP27) in vivo and suppresses mitochondrial membrane potential (Δψ) in neuroblastoma cells. In the present study, the overexpression of SPARC in SK-N-BE(2) and NB1691 neuroblastoma cell lines suppresses radiation-induced G2M cell cycle arrest, proliferation, HSP27 expression (in vitro and in vivo) and induces the collapse of the mitochondrial Δψ. Gene ontology analysis demonstrated that the overexpression of SPARC combined with irradiation, induces the expression of dissimilar molecular function genes in SK-N-BE(2) and NB1691 cells, providing evidence of a dissimilar response signaling pathway. These results demonstrate that overexpression of SPARC suppresses radiation-induced HSP27 expression in neuroblastoma cells and the combination of SPARC and radiation induces the expression of protein 21, but suppresses neuroblastoma tumor density in in vivo mouse models. SPARC also induces mitochondrial Δψ collapse in SK-N-BE(2) and NB1691 neuroblastoma cells.
Collapse
Affiliation(s)
- Smita Tanpure
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Jerusha Boyineini
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Manu Gnanamony
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Reuben Antony
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Karen S. Fernández
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Jaime Libes
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Julian Lin
- Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - David Pinson
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Pushpa A. Joseph
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
- Department of Surgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| |
Collapse
|
12
|
Lin Y, Ge X, Wen Y, Shi ZM, Chen QD, Wang M, Liu LZ, Jiang BH, Lu Y. MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells. Oncotarget 2016; 7:70857-70868. [PMID: 27765914 PMCID: PMC5342594 DOI: 10.18632/oncotarget.12268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells.
Collapse
Affiliation(s)
- Yong Lin
- Department of Laboratory Medicine, Huashan Hospital of Fudan University, Shanghai, China
- The Department of Clinical Laboratory, Central Laboratory, Jing'an District Centre Hospital of Shanghai, Huashan Hospital of Fudan University Jing'An Branch, Shanghai, China
| | - Xin Ge
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Ninggao Personalized Medicine and Technology Innovation Center, Nanjing, China
| | - Yiyang Wen
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Zhu-Mei Shi
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiu-Dan Chen
- The Department of Clinical Laboratory, Central Laboratory, Jing'an District Centre Hospital of Shanghai, Huashan Hospital of Fudan University Jing'An Branch, Shanghai, China
| | - Min Wang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer. Int J Mol Sci 2016; 17:ijms17010137. [PMID: 26805817 PMCID: PMC4730376 DOI: 10.3390/ijms17010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when they are exposed to various stresses, such as chemotherapy. While the administration of gemcitabine, an anti-tumor drug, has been the standard treatment for patients with advanced pancreatic cancer, accumulating evidence shows that HSP27 plays a key role in the chemosensitivity to gemcitabine. In addition, phosphorylated HSP27 induced by gemcitabine has been associated with the inhibition of pancreatic cancer cell growth. In this review, we summarize the role of phosphorylated HSP27, as well as HSP27, in the regulation of chemosensitivity in pancreatic cancer.
Collapse
|