1
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1-14. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Cambronero S, Dupré A, Mastier C, Melodelima D. Non-invasive High-Intensity Focused Ultrasound Treatment of Liver Tissues in an In Vivo Porcine Model: Fast, Large and Safe Ablations Using a Toroidal Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:212-224. [PMID: 36441030 DOI: 10.1016/j.ultrasmedbio.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
A toroidal high-intensity focused ultrasound (HIFU) transducer was used to non-invasively treat liver tissues in vivo in a pig model. The transducer was divided into 32 concentric rings with equal surface areas operating at 2.5 MHz. First, attenuation of skin, fat, muscle and liver tissues was measured in fresh animal samples to adjust the energy delivered to the focal zone. Then, 8 animals were included in the present protocol and placed in a dorsal decubitus proclive position at an angle of 15°. The device was held by hand, and sonications were performed during apnea. Two thermal HIFU lesions were created in 40 s in each animal. The average abdominal wall thickness was 14.8 ± 1.3 mm (12.5-17.6 mm). The longest and shortest axes of the HIFU ablations were 20.9 ± 6.3 mm (14.0-33.7 mm) and 14.2 ± 5.5 mm (7.0-22.0 mm), respectively. All HIFU lesions were visible on sonograms. The correlation between the dimensions of the HIFU lesions observed on sonograms and those obtained during gross examination was r = 0.84. Creating large and fast ablations with reliable ultrasound imaging guidance in the liver using this handheld device may represent a new therapeutic option for patients with liver tumors.
Collapse
Affiliation(s)
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon, Lyon, France; Centre Léon Bérard, Lyon, France
| | | | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon, Lyon, France
| |
Collapse
|
3
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
4
|
Sofuni A, Asai Y, Mukai S, Yamamoto K, Itoi T. High-intensity focused ultrasound therapy for pancreatic cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01208-4. [PMID: 35551555 DOI: 10.1007/s10396-022-01208-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer (PC) has one of the poorest prognoses among solid cancers, and its incidence has increased recently. Satisfactory outcomes are not achieved with current therapies; thus, novel treatments are urgently needed. High-intensity focused ultrasound (HIFU) is a novel therapy for ablating tissue from the outside of the body by focusing ultrasonic waves from multiple sources on the tumor. In this therapy, only the focal area is heated to 80-100 ºC, which causes coagulative necrosis of the tissue, with hardly any impact on the tissue outside the focal area. Although HIFU is a minimally invasive treatment and is expected to be useful, it is not yet generally known. Here, we discuss the usefulness of HIFU treatment for un-resectable advanced PC using the results of previous research, meta-analyses, and systematic reviews on its efficacy and safety. HIFU therapy for un-resectable PC is useful for its anti-tumor effect and pain relief, and is expected to prolong survival time and improve quality of life. Although HIFU for PC has several limitations and further study is needed, this technique can be safely performed on un-resectable advanced PC. In future, HIFU could be utilized as a minimally invasive treatment strategy for PC patients with a poor prognosis.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
5
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|
6
|
Sofuni A, Asai Y, Tsuchiya T, Ishii K, Tanaka R, Tonozuka R, Honjo M, Mukai S, Nagai K, Yamamoto K, Matsunami Y, Kurosawa T, Kojima H, Homma T, Minami H, Nakatsubo R, Hirakawa N, Miyazawa H, Nagakawa Y, Tsuchida A, Itoi T. Novel Therapeutic Method for Unresectable Pancreatic Cancer-The Impact of the Long-Term Research in Therapeutic Effect of High-Intensity Focused Ultrasound (HIFU) Therapy. Curr Oncol 2021; 28:4845-4861. [PMID: 34898585 PMCID: PMC8628685 DOI: 10.3390/curroncol28060409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a novel advanced therapy for unresectable pancreatic cancer (PC). HIFU therapy with chemotherapy is being promoted as a novel method to control local advancement by tumor ablation. We evaluated the therapeutic effects of HIFU therapy in locally advanced and metastatic PC. PC patients were treated with HIFU as an optional local therapy and systemic chemotherapy. The FEP-BY02 (Yuande Bio-Medical Engineering) HIFU device was used under ultrasound guidance. Of 176 PC patients, 89 cases were Stage III and 87 were Stage IV. The rate of complete tumor ablation was 90.3%, while that of symptom relief was 66.7%. The effectiveness on the primary lesions were as follows: complete response (CR): n = 0, partial response (PR): n = 21, stable disease (SD): n = 106, and progressive disease (PD): n = 49; the primary disease control rate was 72.2%. Eight patients underwent surgery. The median survival time (MST) after diagnosis for HIFU with chemotherapy compared to chemotherapy alone (100 patients in our hospital) was 648 vs. 288 days (p < 0.001). Compared with chemotherapy alone, the combination of HIFU therapy and chemotherapy demonstrated significant prolongation of prognosis. This study suggests that HIFU therapy has the potential to be a novel combination therapy for unresectable PC.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takayoshi Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kentaro Ishii
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Reina Tanaka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Tonozuka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Mitsuyoshi Honjo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kazumasa Nagai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yukitoshi Matsunami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takashi Kurosawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hiroyuki Kojima
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Toshihiro Homma
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hirohito Minami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Nakatsubo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Noriyuki Hirakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hideaki Miyazawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| |
Collapse
|
7
|
Sanchez M, Barrere V, Treilleux I, Chopin N, Melodelima D. Development of a noninvasive HIFU treatment for breast adenocarcinomas using a toroidal transducer based on preliminary attenuation measurements. ULTRASONICS 2021; 115:106459. [PMID: 33990009 DOI: 10.1016/j.ultras.2021.106459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among women. For the last fifteen years, treatments that are less invasive than lumpectomy, such as high-intensity focused ultrasound (HIFU) therapy, have been developed, with encouraging results. In this study, a toroidal HIFU transducer was used to create lesions of at least 2 cm in diameter within less than one minute of treatment. The toroidal HIFU transducer created two focal zones that led to large, fast and homogeneous ablations (10.5 cc/min). The experiments were conducted in 30 human samples of normal breast tissues recovered from mastectomies to measure acoustic attenuation (N = 30), and then, HIFU lesions were created (N = 15). Eight HIFU ablations were performed to evaluate the reproducibility of the lesions. HIFU lesions were created in 45 s with a toroidal HIFU transducer working at 2.5 MHz. The longest and shortest axes of the HIFU lesions were 21.7 ± 3.1 mm and 23.5 ± 3.3 mm respectively, corresponding to an average volume of 7.3 ± 1.4 cm3. These HIFU lesions were performed at an average depth of 19.0 ± 1.5 mm, while the integrity of the skin was preserved. The HIFU-treated breast tissues had a higher level of attenuation (0.57 ± 0.11 Np.cm-1.MHz-1) when compared to the untreated tissues (0.21 ± 0.04 Np.cm-1.MHz-1). This study shows the feasibility of a fast and fully noninvasive treatment using a toroidal transducer for breast tumors measuring up to 15 mm in diameter.
Collapse
Affiliation(s)
- M Sanchez
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France
| | - V Barrere
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France
| | | | - N Chopin
- Centre Léon Bérard, F-69008 Lyon, France
| | - D Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France.
| |
Collapse
|
8
|
Development of a Simple In Vitro Artery Model and an Evaluation of the Impact of Pulsed Flow on High-Intensity Focused Ultrasound Ablation. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Battais A, Barrère V, N'Djin WA, Dupré A, Rivoire M, Melodelima D. Fast and Selective Ablation of Liver Tumors by High-Intensity Focused Ultrasound Using a Toroidal Transducer Guided by Ultrasound Imaging: The Results of Animal Experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3286-3295. [PMID: 32891425 DOI: 10.1016/j.ultrasmedbio.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated that high-intensity focused ultrasound (HIFU) produced with an intra-operative toroidal-shaped transducer causes fast, selective liver tumor ablations in an animal model. The HIFU device is composed of 256 emitters working at 3 MHz. A 7.5 MHz ultrasound imaging probe centered on the HIFU transducer guided treatment. VX2 tumor segments (25 mg) were implanted into the right lateral liver lobes of 45 New Zealand rabbits. The animals were evenly divided into groups 1 (toroidal HIFU ablation), 2 (surgical resection) and 3 (untreated control). Therapeutic responses were evaluated with gross pathology and histology 11 d post-treatment. Toroidal transducer-produced HIFU ablation (average ablation rate 10.5 cc/min) allowed fast and homogeneous tumor treatment. Sonograms showed all ablations. VX2 tumors were completely coagulated and surrounded by safety margins without surrounding-organ secondary HIFU lesions. HIFU group tumor volumes at autopsy (39 mm3) were significantly lower than control group volumes (2610 mm3, p < 0.0001). HIFU group tumor metastasis (27%) was lower than resected (33%) and control (67%) group metastasis. Ultrasound imaging, gross pathology and histology results supported these outcomes. HIFU procedures had no complications. Rabbit liver tumor ablation using a toroidal HIFU transducer under ultrasound imaging guidance might therefore be an effective intra-operative treatment for localized liver metastases.
Collapse
Affiliation(s)
- Amélie Battais
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Victor Barrère
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W Apoutou N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| |
Collapse
|
10
|
Sebeke LC, Rademann P, Maul AC, Schubert-Quecke C, Annecke T, Yeo SY, Castillo-Gómez JD, Schmidt P, Grüll H, Heijman E. Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model. Int J Hyperthermia 2020; 37:786-798. [PMID: 32619373 DOI: 10.1080/02656736.2020.1782999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Pia Rademann
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Claudia Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Claudia Schubert-Quecke
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thorsten Annecke
- Department of Anesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sin Yuin Yeo
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo-Gómez
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Philips Research Eindhoven, High Tech, Eindhoven, The Netherlands
| |
Collapse
|
11
|
Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL, Leite EA. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals (Basel) 2019; 12:E171. [PMID: 31775273 PMCID: PMC6958340 DOI: 10.3390/ph12040171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional chemotherapy regimens have limitations due to serious adverse effects. Targeted drug delivery systems to reduce systemic toxicity are a powerful drug development platform. Encapsulation of antitumor drug(s) in thermosensitive nanocarriers is an emerging approach with a promise to improve uptake and increase therapeutic efficacy, as they can be activated by hyperthermia selectively at the tumor site. In this review, we focus on thermosensitive nanosystems associated with hyperthermia for the treatment of cancer, in preclinical and clinical use.
Collapse
Affiliation(s)
- Isabela Pereira Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| | | | - Ana Luiza Chaves Maia
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Trasfusional Medicine, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Danyelle M. Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Elaine Amaral Leite
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| |
Collapse
|
12
|
Vion-Bailly J, N'Djin WA, Suarez Castellanos IM, Mestas JL, Carpentier A, Chapelon JY. A causal study of the phenomenon of ultrasound neurostimulation applied to an in vivo invertebrate nervous model. Sci Rep 2019; 9:13738. [PMID: 31551448 PMCID: PMC6760187 DOI: 10.1038/s41598-019-50147-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
Focused ultrasound are considered to be a promising tool for the treatment of neurological conditions, overcoming the limitations of current neurostimulation techniques in terms of spatial resolution and invasiveness. Much evidence to support the feasibility of ultrasound activation of neurons at the systemic level has already been provided, but to this day, the biophysical mechanisms underlying ultrasound neurostimulation are still widely unknown. In order to be able to establish a clear and robust causality between acoustic parameters of the excitation and neurobiological characteristics of the response, it is necessary to work at the cellular level, or alternatively on very simple animal models. The study reported here responds to three objectives. Firstly, to propose a simple nervous model for the study of the ultrasound neurostimulation phenomenon, associated with a clear and simple experimental protocol. Secondly, to compare the characteristics of this model’s nervous response to ultrasound neurostimulation with its nervous response to mechanical and electrical stimulation. Thirdly, to study the role played by certain acoustic parameters in the success rate of the phenomenon of ultrasound stimulation. The feasibility of generating action potentials (APs) in the giant axons of an earthworm’s ventral nerve cord, using pulsed ultrasound stimuli (f = 1.1 MHz, Ncycles = 175–1150, PRF = 25–125 Hz, Npulses = 20, PA = 2.5–7.3 MPa), was demonstrated. The time of generation (TOG) of APs associated with ultrasound stimulation was found to be significantly shorter and more stable than the TOG associated with mechanical stimulation (p < 0.001). By applying a causal approach to interpret the results of this study, it was concluded that, in this model, the nervous response to focused ultrasound is initiated along the afferent neurons, in between the mechanosensors and the synaptic connections with the giant axons. Additionally, early results are provided, highlighting a trend for the success rate of ultrasound neurostimulation and number of APs triggered per response to increase with increasing pulse repetition frequency (p < 0.05 and p < 0.001, respectively), increasing pulse duration and increasing pulse amplitude.
Collapse
Affiliation(s)
- Jérémy Vion-Bailly
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| | - W Apoutou N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | | | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Alexandre Carpentier
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Neurosurgery department, Paris, F-75013, France.,Sorbonne Université, Paris, F-75005, France
| | - Jean-Yves Chapelon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| |
Collapse
|
13
|
Caloone J, Barrere V, Sanchez M, Cambronero S, Huissoud C, Melodelima D. High-Intensity Focused Ultrasound Using a Toroidal Transducer as an Adjuvant Treatment for Placenta Accreta: A Preliminary Ex Vivo Study. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|