1
|
Cutrona MB, Wu J, Yang K, Peng J, Chen T. Pancreatic cancer organoid-screening captures personalized sensitivity and chemoresistance suppression upon cytochrome P450 3A5-targeted inhibition. iScience 2024; 27:110289. [PMID: 39055940 PMCID: PMC11269815 DOI: 10.1016/j.isci.2024.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 3A5 (CYP3A5) has been proposed as a predictor of therapy response in subtypes of pancreatic ductal adenocarcinoma cancer (PDAC). To validate CYP3A5 as a therapeutic target, we developed a high-content image organoid-based screen to quantify the phenotypic responses to the selective inhibition of CYP3A5 enzymatic activity by clobetasol propionate (CBZ), using a cohort of PDAC-derived organoids (PDACOs). The chemoresistance of PDACOs to a panel of standard-of-care drugs, alone or in combination with CBZ, was investigated. PDACO pharmaco-profiling revealed CBZ to have anti-cancer activity that was dependent on the CYP3A5 level. In addition, CBZ restored chemo-vulnerability to cisplatin in a subset of PDACOs. A correlative proteomic analysis established that CBZ caused the suppression of multiple cancer pathways sustained by or associated with a mutant form of p53. Limiting the active pool of CYP3A5 enables targeted and personalized therapy to suppress pro-oncogenic mechanisms that fuel chemoresistance in some PDAC tumors.
Collapse
Affiliation(s)
- Meritxell B. Cutrona
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Ka Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
2
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 333] [Impact Index Per Article: 333.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Brumskill S, Barrera LN, Calcraft P, Phillips C, Costello E. Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. J Physiol Biochem 2023; 79:223-234. [PMID: 34865180 PMCID: PMC9905179 DOI: 10.1007/s13105-021-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.
Collapse
Affiliation(s)
- Sarah Brumskill
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | - Lawrence N Barrera
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Peter Calcraft
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Eithne Costello
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
4
|
Mulder J, van Rossum T, Mariz S, Magrelli A, de Boer A, Pasmooij AMG, Stoyanova-Beninska V. Orphan Medicinal Products for the Treatment of Pancreatic Cancer: Lessons Learned From Two Decades of Orphan Designation. Front Oncol 2021; 11:809035. [PMID: 34988030 PMCID: PMC8720999 DOI: 10.3389/fonc.2021.809035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has a dismal prognosis and only a few treatment options are available. In the European Union, pancreatic cancer classifies as a rare disease, allowing drug developers to apply for orphan medicinal product (OMP) designation. The aim of this study was to provide more detail on OMPs for pancreatic cancer. All applications for OMP designation submitted to the EMA between 2000 and 2019 were identified. For each medicinal product that received an OMP designation, the mode of drug action, use of protocol assistance, and current life cycle status was determined. Fifty-two medicinal products received an OMP designation. At the time of submission, eighteen OMPs were at the non-clinical and 34 OMPs were at the clinical stage of development. At least fourteen kinds of mode of action were explored in the condition. For eighteen out of 52 OMPs protocol assistance was sought. At the time of data analysis, one OMP received marketing authorisation and 24 OMPs were ongoing in development. Many medicinal products for pancreatic cancer received an OMP designation and the majority of these products was already in the clinical stage of development. Nonetheless, the success rate of OMPs for pancreatic cancer that reach the market is low, and increasing this rate is something to aspire. Fortunately, development is still ongoing for a part of the OMPs, and a few developers are planning to submit a marketing authorisation application in the near future. This however does not guarantee success, as pancreatic cancer remains a difficult disease to treat. Developers are advised to make optimal use of incentives such as protocol assistance, establishing (early) dialogue between regulators and drug developers and to agree on important topics such as clinical trial design.
Collapse
Affiliation(s)
- Jorn Mulder
- Medicines Evaluation Board, Utrecht, Netherlands
- *Correspondence: Jorn Mulder,
| | | | | | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anthonius de Boer
- Medicines Evaluation Board, Utrecht, Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht, Netherlands
| | | | | |
Collapse
|
5
|
Schlick K, Kiem D, Huemer F, Neureiter D, Weiss L, Greil R. Non-pegylated Liposomal Doxorubicin as Palliative Chemotherapy in pre-Treated Advanced Pancreatic Cancer: A Retrospective Analysis of Twenty-Eight Patients. Technol Cancer Res Treat 2021; 20:15330338211042139. [PMID: 34595977 PMCID: PMC8489749 DOI: 10.1177/15330338211042139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Pancreatic cancer carries a devastating prognosis and is the fourth leading cause for cancer-related death in the United States and most European countries. Although one-third of patients receive a palliative third line therapy, the benefit of systemic therapy beyond second-line remains unclear. A plethora of clinical trials investigating novel drugs have failed over the past years. Due to the lack of established treatment regimens beyond second line, we offered nonpegylated liposomal doxorubicin, well known in other tumor entities, to pretreated pancreatic cancer patients requesting systemic therapy. Material and Methods: In this retrospective analysis, 28 patients with pancreatic carcinoma treated with nonpegylated liposomal doxorubicin (Myocet®) between 2012 and 2018 at our department were included. Results: For the majority of patients (n = 18, 64%), nonpeglyted liposomal doxorubicin was offered as a third-line therapy. Five patients received it as second line, four patients as fourth line, and one patient as fifth line of therapy. Half of the patients received at least a therapy cycle. The objective response rate to treatment was 7.1%. One patient had a period of radiologically confirmed stable disease with stable tumor markers. Another patient experienced partial remission. Conclusion: According to our findings the benefit of nonpegylated liposomal doxorubicin in pancreatic cancer beyond second line is limited.
Collapse
Affiliation(s)
- Konstantin Schlick
- Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dominik Kiem
- Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Florian Huemer
- Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Lukas Weiss
- Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
7
|
Bengtsson A, Andersson R, Rahm J, Ganganna K, Andersson B, Ansari D. Organoid technology for personalized pancreatic cancer therapy. Cell Oncol (Dordr) 2021; 44:251-260. [PMID: 33492660 PMCID: PMC7985124 DOI: 10.1007/s13402-021-00585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma has the lowest survival rate among all major cancers and is the third leading cause of cancer-related mortality. The stagnant survival statistics and dismal response rates to current therapeutics highlight the need for more efficient preclinical models. Patient-derived organoids (PDOs) offer new possibilities as powerful preclinical models able to account for interpatient variability. Organoid development can be divided into four different key phases: establishment, propagation, drug screening and response prediction. Establishment entails tailored tissue extraction and growth protocols, propagation requires consistent multiplication and passaging, while drug screening and response prediction will benefit from shorter and more precise assays, and clear decision-making tools. CONCLUSIONS This review attempts to outline the most important challenges that remain in exploiting organoid platforms for drug discovery and clinical applications. Some of these challenges may be overcome by novel methods that are under investigation, such as 3D bioprinting systems, microfluidic systems, optical metabolic imaging and liquid handling robotics. We also propose an optimized organoid workflow inspired by all technical solutions we have presented.
Collapse
Affiliation(s)
- Axel Bengtsson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden
| | - Jonas Rahm
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden
| | - Karthik Ganganna
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden
| | - Bodil Andersson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, Skåne University Hospital, Lund, SE-221 85, Lund, Sweden.
| |
Collapse
|
8
|
Geady C, Keller H, Siddiqui I, Bilkey J, Dhani NC, Jaffray DA. Bridging the gap between micro- and macro-scales in medical imaging with textural analysis - A biological basis for CT radiomics classifiers? Phys Med 2020; 72:142-151. [PMID: 32276133 DOI: 10.1016/j.ejmp.2020.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Studies suggest there is utility in computed tomography (CT) radiomics for pancreatic disease; however, the precise biological interpretation of its features is unclear. In this manuscript, we present a novel approach towards this interpretation by investigating sub-micron tissue structure using digital pathology. METHODS A classification-to attenuation (CAT) function was developed and applied to digital pathology images to create sub-micron linear attenuation maps. From these maps, grey level co-occurrence matrix (GLCM) features were extracted and compared to pathology features. To simulate the spatial frequency loss in a CT scanner, the attenuation maps were convolved with a point spread function (PSF) and subsequently down-sampled. GLCM features were extracted from these down-sampled maps to assess feature stability as a function of spatial frequency loss. RESULTS Two GLCM features were shown to be strongly and positively correlated (r = 0.8) with underlying characteristics of the tumor microenvironment, namely percent pimonidazole staining in the tumor. All features underwent marked change as a function of spatial frequency loss; progressively larger spatial frequency losses resulted in progressively larger inter-tumor standard deviations; two GLCM features exhibited stability up to a 100 µm pixel size. CONCLUSION This work represents a necessary step towards understanding the biological significance of radiomics. Our preliminary results suggest that cellular metrics of pimonidazole-detectable hypoxia correlate with sub-micron attenuation coefficient texture; however, the consistency of these textures in face of spatial frequency loss is detrimental for robust radiomics. Further study in larger data sets may elucidate additional, potentially more robust features of biologic and clinical relevance.
Collapse
Affiliation(s)
- C Geady
- Department of Medical Biophysics, University of Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.
| | - H Keller
- Department of Radiation Oncology, University of Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - I Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Canada
| | - J Bilkey
- STTARR, University Health Network, Toronto, Canada
| | - N C Dhani
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - D A Jaffray
- Department of Medical Biophysics, University of Toronto, Canada; Department of Radiation Oncology, University of Toronto, Canada; STTARR, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; The TECHNA Institute for the Advancement of Technology for Health, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
9
|
Mollinedo F, Gajate C. Novel therapeutic approaches for pancreatic cancer by combined targeting of RAF→MEK→ERK signaling and autophagy survival response. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S153. [PMID: 31576360 PMCID: PMC6685885 DOI: 10.21037/atm.2019.06.40] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Faustino Mollinedo
- Department of Molecular Biomedicine, Laboratory of Cell Death and Cancer Therapy, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Consuelo Gajate
- Department of Molecular Biomedicine, Laboratory of Cell Death and Cancer Therapy, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Nakaya T, Oshiro H, Saito T, Sakuma Y, Horie H, Sata N, Tanaka A. Metastasis of pancreatic cancer within primary colon cancer by overtaking the stromal microenvironment. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3141-3146. [PMID: 31938443 PMCID: PMC6958075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/15/2018] [Indexed: 06/10/2023]
Abstract
We report a unique case of a 74-old man, who presented with double cancers, showing metastasis of pancreatic cancer to colon cancer. Histopathological examination after surgery revealed that the patient had ascending colon cancer, which metastasized to the liver (pT4N0M1), as well as pancreatic cancer (pT2N1M1) that metastasized to the most invasive portion of the colon cancer, namely the serosal to subserosal layers. Although the mechanisms for this scenario have yet to be elucidated, we speculate that the metastatic pancreatic carcinoma overtook the stromal microenvironment of the colon cancer. Namely, the cancer microenvironment enriched by cancer-associated fibroblasts, which supported the colon cancer, might be suitable for the invasion and engraftment by pancreatic carcinoma. The similarity of histological appearance might make it difficult to distinguish metastatic pancreatic carcinoma within colon cancer. Furthermore, the metastasis of pancreatic carcinoma in colon carcinoma might be more common, despite it not having been previously reported.
Collapse
Affiliation(s)
- Takeo Nakaya
- Department of Pathology, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Hisashi Oshiro
- Department of Pathology, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Takumi Saito
- Department of Surgery, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Akira Tanaka
- Department of Pathology, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| |
Collapse
|
11
|
Adamska A, Domenichini A, Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 2017; 18:E1338. [PMID: 28640192 PMCID: PMC5535831 DOI: 10.3390/ijms18071338] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|