1
|
Farinella R, Felici A, Peduzzi G, Testoni SGG, Costello E, Aretini P, Blazquez-Encinas R, Oz E, Pastore A, Tacelli M, Otlu B, Campa D, Gentiluomo M. From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction. Semin Cancer Biol 2025; 112:71-92. [PMID: 40147701 DOI: 10.1016/j.semcancer.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies and genetic analyses, through which key risk factors, including smoking, diabetes, chronic pancreatitis, and inherited predispositions, have been identified. However, the multifactorial nature of PDAC has often been insufficiently addressed by these methods, leading to limited precision in individualized risk assessments. Advances in artificial intelligence (AI) have been proposed as a transformative approach, allowing the integration of diverse datasets-spanning genetic, clinical, lifestyle, and imaging data into dynamic models capable of uncovering novel interactions and risk profiles. In this review, the evolution of PDAC risk stratification is explored, with classical epidemiological frameworks compared to AI-driven methodologies. Genetic insights, including genome-wide association studies and polygenic risk scores, are discussed, alongside AI models such as machine learning, radiomics, and deep learning. Strengths and limitations of these approaches are evaluated, with challenges in clinical translation, such as data scarcity, model interpretability, and external validation, addressed. Finally, future directions are proposed for combining classical and AI-driven methodologies to develop scalable, personalized predictive tools for PDAC, with the goal of improving early detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Sabrina Gloria Giulia Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Policlinico San Donato, Vita-Salute San Raffaele University, Milan, Italy
| | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, University of Cordoba / Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elif Oz
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Matteo Tacelli
- Pancreas Translational & Clinical Research Center, Pancreato-Biliary Endoscopy and Endosonography Division, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Madela F, Ferndale L, Aldous C. Diagnostic Differentiation between Pancreatitis and Pancreatic Cancer: A Scoping Review. Diagnostics (Basel) 2024; 14:290. [PMID: 38337806 PMCID: PMC10855106 DOI: 10.3390/diagnostics14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatitis, encompassing acute and chronic forms, and pancreatic cancer pose significant challenges to the exocrine tissue of the pancreas. Recurrence rates and complications following acute pancreatitis episodes can lead to long-term risks, including diabetes mellitus. Chronic pancreatitis can develop in approximately 15% of cases, regardless of the initial episode's severity. Alcohol-induced pancreatitis, idiopathic causes, cigarette smoking, and hereditary pancreatitis contribute to the progression to chronic pancreatitis. Chronic pancreatitis is associated with an increased risk of pancreatic cancer, with older age at onset and smoking identified as risk factors. This scoping review aims to synthesise recent publications (2017-2022) on the diagnostic differentiation between pancreatitis and pancreatic cancer while identifying knowledge gaps in the field. The review focuses on biomarkers and imaging techniques in individuals with pancreatitis and pancreatic cancer. Promising biomarkers such as faecal elastase-1 and specific chemokines offer non-invasive ways to assess pancreatic insufficiency and detect early biomarkers for chronic pancreatitis. Imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), and positron emission tomography (PET), aid in differentiating between chronic pancreatitis and pancreatic cancer. However, accurately distinguishing between the two conditions remains a challenge, particularly when a mass is present in the head of the pancreas. Several knowledge gaps persist despite advancements in understanding the association between pancreatitis and pancreatic cancer, including the correlation between histopathological grading systems, non-invasive imaging techniques, and biomarkers in chronic pancreatitis to determine the risk of progression to pancreatic cancer, as well as differentiating between the two conditions. Further research is necessary to enhance our understanding of these aspects, which can ultimately improve the diagnosis and management of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Fusi Madela
- Department of Surgery, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (L.F.)
| | | | | |
Collapse
|
3
|
Wu Y, Gao L, Guo X, Wang Z, Lian W, Deng K, Lu L, Xing B, Zhu H. Pituitary adenomas in patients with multiple endocrine neoplasia type 1: a single-center experience in China. Pituitary 2019; 22:113-123. [PMID: 30637623 DOI: 10.1007/s11102-019-00939-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To explore the clinical characteristics of pituitary adenomas in patients with MEN1 and to summarize treatment strategies for MEN1 in a Chinese population. METHODS We retrospectively analyzed 54 MEN1 patients with pituitary adenomas diagnosed at Peking Union Medical College Hospital from March 2003 to January 2017. Clinical data, laboratory testing results, treatments of involved glands and treatment responses were collected and analyzed. RESULTS The mean age at pituitary adenoma diagnosis was 53.9 ± 17.8. The patients initially consulted the Endocrinology, General Surgery and Neurosurgery departments, in descending frequency. The nonfunctioning adenoma, prolactinoma, GH-secreting adenoma, cosecreting adenoma, and ACTH-secreting adenoma subtypes accounted for 48.1%, 27.8%, 9.3%, 9.3% and 5.6% of the cases, respectively. The remission rate for prolactinomas was 46.2% (6/13) treated with bromocriptine. And the remission rates were 87.5% (7/8) and 100% (3/3) for GH-secreting adenomas and ACTH-secreting adenomas respectively achieved by transsphenoidal surgery. Nineteen (35.2%) patients with asymptomatic nonfunctioning pituitary adenomas showed no progression after a 35-month follow-up with close observation. Regarding treatment priority, patients with thymic carcinoid tumors received first-line surgery, 54% of the patients with enteropancreatic tumors had these tumors treated first, and 26% of all patients had their pituitary adenomas treated first. In acromegalic patients, pituitary lesions tended to be treated first (75%, p = 0.002). PHPT and adrenocortical adenomas can be managed with elective surgery. CONCLUSIONS The treatment of MEN1 requires cooperation between multidisciplinary teams. Individualized treatment according to the severity of glandular involvement is needed. GH-secreting and ACTH-secreting pituitary adenomas require active treatment, while nonfunctioning pituitary adenomas can be observed closely.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Lin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China.
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China.
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|