1
|
Yavas A, Ozcan K, Adsay NV, Balci S, Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini A, Reid MD, Xue Y, Yang Z, Haye K, Bellizzi AM, Vanoli A, Benhamida J, Balachandran V, Jarnagin W, Park W, O'Reilly EM, Klimstra DS, Basturk O. SWI/SNF Complex-Deficient Undifferentiated Carcinoma of the Pancreas: Clinicopathologic and Genomic Analysis. Mod Pathol 2024; 37:100585. [PMID: 39094734 DOI: 10.1016/j.modpat.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Inactivating alterations in the SWItch/Sucrose NonFermentable (SWI/SNF) Chromatin Remodeling Complex subunits have been described in multiple tumor types. Recent studies focused on SMARC subunits of this complex to understand their relationship with tumor characteristics and therapeutic opportunities. To date, pancreatic cancer with these alterations has not been well studied, although isolated cases of undifferentiated carcinomas have been reported. Herein, we screened 59 pancreatic undifferentiated carcinomas for alterations in SWI/SNF complex-related (SMARCB1 [BAF47/INI1], SMARCA4 [BRG1], SMARCA2 [BRM]) proteins and/or genes using immunohistochemistry and/or next-generation sequencing. Cases with alterations in SWI/SNF complex-related proteins/genes were compared with cases without alterations, as well as with 96 conventional pancreatic ductal adenocarcinomas (PDAC). In all tumor groups, mismatch repair and PD-L1 protein expression were also evaluated. Thirty of 59 (51%) undifferentiated carcinomas had a loss of SWI/SNF complex-related protein expression or gene alteration. Twenty-seven of 30 (90%) SWI-/SNF-deficient undifferentiated carcinomas had rhabdoid morphology (vs 9/29 [31%] SWI-/SNF-retained undifferentiated carcinomas; P < .001) and all expressed cytokeratin, at least focally. Immunohistochemically, SMARCB1 protein expression was absent in 16/30 (53%) cases, SMARCA2 in 4/30 (13%), and SMARCA4 in 4/30 (13%); both SMARCB1 and SMARCA2 protein expressions were absent in 1/30 (3%). Five of 8 (62.5%) SWI-/SNF-deficient undifferentiated carcinomas that displayed loss of SMARCB1 protein expression by immunohistochemistry were found to have corresponding SMARCB1 deletions by next-generation sequencing. Analysis of canonical driver mutations for PDAC in these cases showed KRAS (2/5) and TP53 (2/5) abnormalities. Median combined positive score for PD-L1 (E1L3N) was significantly higher in the undifferentiated carcinomas with/without SWI/SNF deficiency compared with the conventional PDACs (P < .001). SWI-/SNF-deficient undifferentiated carcinomas were larger (P < .001) and occurred in younger patients (P < .001). Patients with SWI-/SNF-deficient undifferentiated carcinoma had worse overall survival compared with patients with SWI-/SNF-retained undifferentiated carcinoma (P = .004) and PDAC (P < .001). Our findings demonstrate that SWI-/SNF-deficient pancreatic undifferentiated carcinomas are frequently characterized by rhabdoid morphology, exhibit highly aggressive behavior, and have a negative prognostic impact. The ones with SMARCB1 deletions appear to be frequently KRAS wild type. Innovative developmental therapeutic strategies targeting this genomic basis of the SWI/SNF complex and the therapeutic implications of EZH2 inhibition (NCT03213665), SMARCA2 degrader (NCT05639751), or immunotherapy are currently under investigation.
Collapse
Affiliation(s)
- Aslihan Yavas
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Now with Institute of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Kerem Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - N Volkan Adsay
- The Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Serdar Balci
- Department of Pathology, Memorial Healthcare Group, Istanbul, Turkey
| | - Zeynep C Tarcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Caris Life Sciences, Miami, Florida
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Michelle D Reid
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yue Xue
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Zhaohai Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kester Haye
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa, Iowa City, Iowa; Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Paige.AI, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York.
| |
Collapse
|
2
|
Liang H, Zheng X, Zhang X, Zhang Y, Zheng J. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 2024; 41:119. [PMID: 38630164 DOI: 10.1007/s12032-024-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hanyun Liang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang, 261041, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China.
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China.
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
3
|
van Beek DJ, Verschuur AVD, Brosens LAA, Valk GD, Pieterman CRC, Vriens MR. Status of Surveillance and Nonsurgical Therapy for Small Nonfunctioning Pancreatic Neuroendocrine Tumors. Surg Oncol Clin N Am 2023; 32:343-371. [PMID: 36925190 DOI: 10.1016/j.soc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) occur in < 1/100,000 patients and most are nonfunctioning (NF). Approximately 5% occur as part of multiple endocrine neoplasia type 1. Anatomic and molecular imaging have a pivotal role in the diagnosis, staging and active surveillance. Surgery is generally recommended for nonfunctional pancreatic neuroendocrine tumors (NF-PNETs) >2 cm to prevent metastases. For tumors ≤2 cm, active surveillance is a viable alternative. Tumor size and grade are important factors to guide management. Assessment of death domain-associated protein 6/alpha-thalassemia/mental retardation X-linked and alternative lengthening of telomeres are promising novel prognostic markers. This review summarizes the status of surveillance and nonsurgical management for small NF-PNETs, including factors that can guide management.
Collapse
Affiliation(s)
- Dirk-Jan van Beek
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G02.5.26, PO Box 85500, Utrecht 3508 GA, the Netherlands. https://twitter.com/annaveraverschu
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G4.02.06, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Carolina R C Pieterman
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands.
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| |
Collapse
|
4
|
Meng GX, Yang CC, Yan LJ, Yang YF, Yan YC, Hong JG, Chen ZQ, Dong ZR, Li T. The somatic mutational landscape and role of the ARID1A gene in hepatocellular carcinoma. Heliyon 2023; 9:e14307. [PMID: 36950649 PMCID: PMC10025035 DOI: 10.1016/j.heliyon.2023.e14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. Clarification of the somatic mutational landscape of important genes could reveal new therapeutic targets and facilitate individualized therapeutic approaches for HCC patients. The mutation and expression changes in the ARID1A gene in HCC remain controversial. Methods First, cBioPortal was used to visualize genetic alterations and DNA copy number alterations (CNAs) in ARID1A. The relationships between ARID1A mutation status and HCC patient clinicopathological features and overall survival (OS) were also determined. Then, a meta-analysis was performed to evaluate the effect of ARID1A mutation or expression on the prognosis of HCC patients. Finally, the role of ARID1A in HCC progression was verified by in vitro experiments. Results ARID1A mutation was detected in 9.35% (33/353) of sequenced HCC cases, and ARID1A mutation decreased ARID1A mRNA expression. Patients with ARID1A alterations presented worse OS than those without ARID1A alterations. Meta-analysis and human HCC tissue microarray (TMA) analysis revealed that HCC patients with low ARID1A expression had worse OS and relapse-free survival (RFS), and low ARID1A expression was negatively correlated with tumour size. Then, ARID1A gain-of-function and loss-of-function experiments demonstrated the tumour suppressor role of ARID1A in HCC in vitro. In terms of the mechanism, we found that ARID1A could inhibit HCC progression by regulating retinoblastoma-like 1 (RBL1) expression via the JNK/FOXO3 pathway. Conclusions ARID1A can be considered a potential prognostic biomarker and candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, 250000, China
| |
Collapse
|
5
|
Kong G, Boehm E, Prall O, Murray WK, Tothill RW, Michael M. Integrating Functional Imaging and Molecular Profiling for Optimal Treatment Selection in Neuroendocrine Neoplasms (NEN). Curr Oncol Rep 2023; 25:465-478. [PMID: 36826704 PMCID: PMC10110720 DOI: 10.1007/s11912-023-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE OF REVIEW Gastroenteropancreatic NEN (GEP-NEN) are group of malignancies with significant clinical, anatomical and molecular heterogeneity. High-grade GEP-NEN in particular present unique management challenges. RECENT FINDINGS In the current era, multidisciplinary management with access to a combination of functional imaging and targeted molecular profiling can provide important disease characterisation, guide individualised management and improve patient outcome. Multiple treatment options are now available, and combination and novel therapies are being explored in clinical trials. Precision medicine is highly relevant for a heterogenous disease like NEN. The integration of dual-tracer functional PET/CT imaging, molecular histopathology and genomic data has the potential to be used to gain a more comprehensive understanding of an individual patient's disease biology for precision diagnosis, prognostication and optimal treatment allocation.
Collapse
Affiliation(s)
- Grace Kong
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia. .,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Emma Boehm
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Owen Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - William K Murray
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Michael
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Choi JH, Paik WH. Risk Stratification of Pancreatic Neuroendocrine Neoplasms Based on Clinical, Pathological, and Molecular Characteristics. J Clin Med 2022; 11:7456. [PMID: 36556070 PMCID: PMC9786745 DOI: 10.3390/jcm11247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms consist of heterogeneous diseases. Depending on the novel features detected by various modern technologies, their classification and related prognosis predictions continue to change and develop. The role of traditional clinicopathological prognostic factors, including classification systems, is also being refined, and several attempts have been made to predict a more accurate prognosis through novel serum biomarkers, genetic factors, and epigenetic factors that have been identified through various state-of-the-art molecular techniques with multiomics sequencing. In this review article, the latest research results including the traditional approach to prognostic factors and recent advanced strategies for risk stratification of pancreatic neuroendocrine neoplasms based on clinical, pathological, and molecular characteristics are summarized. Predicting prognosis through multi-factorial assessments seems to be more efficacious, and prognostic factors through noninvasive methods are expected to develop further advances in liquid biopsy in the future.
Collapse
Affiliation(s)
| | - Woo Hyun Paik
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Viol F, Sipos B, Fahl M, Clauditz TS, Amin T, Kriegs M, Nieser M, Izbicki JR, Huber S, Lohse AW, Schrader J. Novel preclinical gastroenteropancreatic neuroendocrine neoplasia models demonstrate the feasibility of mutation-based targeted therapy. Cell Oncol (Dordr) 2022; 45:1401-1419. [PMID: 36269546 PMCID: PMC9747820 DOI: 10.1007/s13402-022-00727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) form a rare and remarkably heterogeneous group of tumors. Therefore, establishing personalized therapies is eminently challenging. To achieve progress in preclinical drug development, there is an urgent need for relevant tumor models. METHODS We successfully established three gastroenteropancreatic neuroendocrine tumor (GEP-NET) cell lines (NT-18P, NT-18LM, NT-36) and two gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) cell lines (NT-32 and NT-38). We performed a comprehensive characterization of morphology, NET differentiation, proliferation and intracellular signaling pathways of these five cell lines and, in addition, of the NT-3 GEP-NET cell line. Additionally, we conducted panel sequencing to identify genomic alterations suitable for mutation-based targeted therapy. RESULTS We found that the GEP-NEN cell lines exhibit a stable neuroendocrine phenotype. Functional kinome profiling revealed a higher activity of serine/threonine kinases (STK) as well as protein tyrosine kinases (PTK) in the GEP-NET cell lines NT-3 and NT-18LM compared to the GEP-NEC cell lines NT-32 and NT-38. Panel sequencing revealed a mutation in Death Domain Associated Protein (DAXX), sensitizing NT-18LM to the Ataxia telangiectasia and Rad3 related (ATR) inhibitor Berzosertib, and a mutation in AT-Rich Interaction Domain 1A (ARID1A), sensitizing NT-38 to the Aurora kinase A inhibitor Alisertib. Small interfering RNA-mediated knock down of DAXX in the DAXX wild type cell line NT-3 sensitized these cells to Berzosertib. CONCLUSIONS The newly established GEP-NET and GEP-NEC cell lines represent comprehensive preclinical in vitro models suitable to decipher GEP-NEN biology and pathogenesis. Additionally, we present the first results of a GEP-NEN-specific mutation-based targeted therapy. These findings open up new potentialities for personalized therapies in GEP-NEN.
Collapse
Affiliation(s)
- Fabrice Viol
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Bence Sipos
- Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Martina Fahl
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Amin
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Nieser
- Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Jakob R Izbicki
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, Klinikum Nordfriesland, Husum, Germany.
| |
Collapse
|
8
|
Fukumura M, Ishibashi K, Nakaguro M, Nagao T, Saida K, Urano M, Tanigawa M, Hirai H, Yagyuu T, Kikuchi K, Yada N, Sugita Y, Miyabe M, Hasegawa S, Goto M, Yamamoto H, Ohuchi T, Kusafuka K, Ogawa I, Suzuki H, Notohara K, Shimoda M, Tada Y, Kirita T, Takata T, Morinaga S, Maeda H, Warnakulasuriya S, Miyabe S, Nagao T. Salivary Gland Polymorphous Adenocarcinoma: Clinicopathological Features and Gene Alterations in 36 Japanese Patients. J Oral Pathol Med 2022; 51:710-720. [PMID: 35880805 DOI: 10.1111/jop.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Polymorphous adenocarcinoma (PAC) is a common intraoral minor salivary gland carcinoma in Western countries but is extremely rare in Japan. The current study aimed to characterize the clinicopathological features and status of molecular alterations of PAC-associated genes, such as (e.g., PRKD1/2/3, ARID1A, and DDX3X) in a large cohort of Japanese patients with PAC. MATERIALS AND METHODS We examined the cases of 36 Japanese patients with salivary gland PAC and 26 cases involving histopathological mimics. To detect gene splits, fluorescence in situ hybridization was carried out for PAC-associated genes. Additionally, we applied a SNaPshot multiplex assay to identify PRKD1 hotspot mutations. RESULTS This study revealed the indolent clinical course of PAC with a high 10-year overall survival rate (92.9%), accompanied by occasional local recurrences and cervical lymph node metastasis (both 23.3%). Twenty cases (55.6%) of PAC (but none of the mimics) exhibited alterations in at least one PAC-associated gene. Rearrangement of PAC-associated genes and PRKD1 E710D were identified in 17 (47.2%) and 4 (11.1%) cases, respectively; one case showed coexisting PRKD3 split and PRKD1 E710D. In the multivariate analysis, high clinical stage (P=0.0005), the presence of prominent nucleoli (P=0.0003), and ARID1A split positivity (P=0.004) were independent risk factors for disease-free survival. CONCLUSION Japanese patients with PAC showed clinicopathological features similar to those reported in Western countries. This study disclosed that PAC-associated genetic alterations were common and specific findings in PACs. The diagnostic role and possible prognostic significance of PAC-associated genetic alterations in PACs were suggested.
Collapse
Affiliation(s)
- Masahiro Fukumura
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kenichiro Ishibashi
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kosuke Saida
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan
| | - Maki Tanigawa
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Yagyuu
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Nara, Japan
| | - Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University, School of Dentistry, Saitama, Japan
| | - Naomi Yada
- Division of Oral Pathology, Kyushu Dental University, Fukuoka, Japan
| | - Yoshihiko Sugita
- Department of Oral Pathology/Forensic Odontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mitsuo Goto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohuchi
- Department of Diagnostic Pathology, Keiyukai Sapporo Hospital, Sapporo, Japan
| | | | - Ikuko Ogawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroaki Suzuki
- Division of Diagnostic Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| | - Kenji Notohara
- Department of Anatomic Pathology, Kurashiki Central Hospital, Okayama, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Nara, Japan
| | | | - Shojiroh Morinaga
- Department of Diagnostic Pathology, Hino Municipal Hospital, Hino, Japan
| | - Hatsuhiko Maeda
- Department of Oral Pathology/Forensic Odontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London and The WHO Collaborating Centre for Oral Cancer, London, UK
| | - Satoru Miyabe
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
9
|
Pastorino L, Grillo F, Albertelli M, Ghiorzo P, Bruno W. Insights into Mechanisms of Tumorigenesis in Neuroendocrine Neoplasms. Int J Mol Sci 2021; 22:ijms221910328. [PMID: 34638668 PMCID: PMC8508699 DOI: 10.3390/ijms221910328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic studies have identified some of the most relevant genetic players in Neuroendocrine Neoplasm (NEN) tumorigenesis. However, we are still far from being able to draw a model that encompasses their heterogeneity, elucidates the different biological effects consequent to the identified molecular events, or incorporates extensive knowledge of molecular biomarkers and therapeutic targets. Here, we reviewed recent insights in NEN tumorigenesis from selected basic research studies on animal models, highlighting novel players in the intergenic cooperation and peculiar mechanisms including splicing dysregulation, chromatin stability, or cell dedifferentiation. Furthermore, models of tumorigenesis based on composite interactions other than a linear progression of events are proposed, exemplified by the involvement in NEN tumorigenesis of genes regulating complex functions, such as MEN1 or DAXX. Although limited by interspecies differences, animal models have proved helpful for the more in-depth study of every facet of tumorigenesis, showing that the identification of driver mutations is only one of the many necessary steps and that other mechanisms are worth investigating.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
| | - Federica Grillo
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 1632 Genoa, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
- Correspondence: ; Tel.: +39-(01)-0555-7254
| |
Collapse
|
10
|
Odnokoz O, Wavelet-Vermuse C, Hophan SL, Bulun S, Wan Y. ARID1 proteins: from transcriptional and post-translational regulation to carcinogenesis and potential therapeutics. Epigenomics 2021; 13:809-823. [PMID: 33890484 PMCID: PMC8738980 DOI: 10.2217/epi-2020-0414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARID1 proteins are mutually exclusive subunits of the BRG1/BRM-associated factor (BAF) complexes that play an important role in chromatin remodeling and regulate many fundamental cell functions. The role of ARID1s is well defined as a tumor-suppressive. The cancer cells evolve different mechanisms to downregulate ARID1s and inactivate their functions. ARID1s are frequently mutated in human cancer. The recent findings of ARID1A/B downregulation at transcriptional and translational levels along with their low levels in human cancers indicate the significance of regulatory mechanisms of ARID1s in cancers. In this review, we present the current knowledge on the regulation and alterations of ARID1 protein expression in human cancers and indicate the importance of regulators of ARID1s as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cindy Wavelet-Vermuse
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shelby L Hophan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Serdar Bulun
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Author for correspondence: Tel.: +1 312 503 2769;
| |
Collapse
|
11
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
12
|
Arakelyan J, Zohrabyan D, Philip PA. Molecular profile of pancreatic neuroendocrine neoplasms (PanNENs): Opportunities for personalized therapies. Cancer 2020; 127:345-353. [PMID: 33270905 DOI: 10.1002/cncr.33354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are the second most common epithelial tumors of the pancreas. Despite improvements in prognostic grading and staging systems, it remains a challenge to predict the clinical behavior of panNENs and the response to specific therapies given the high degree of heterogeneity of these tumors. Most panNENs are nonfunctional and present as advanced disease. However, systemic therapies provide modest benefits. Therefore, there is a need for predictive biomarkers to develop personalized treatment and to advance new drug development. The somatostatin receptors remain the only clinically established prognostic and predictive biomarkers in panNENs. Oncogenic drivers are at a very low frequency. Commonly mutated genes in panNENs include MEN1, chromatin remodeling genes (DAXX and ATRX), and mammalian target of rapamycin pathway genes. In contrast, poorly differentiated neuroendocrine carcinomas (panNECs), which carry a very poor prognosis, have distinctive mutations in certain genes (eg, RB1 and p53). Ongoing research to integrate epigenomics will provide tremendous opportunities to improve current understanding of the clinical heterogeneity of pancreatic neuroendocrine tumors and provide invaluable insight into the biology of these tumors, new drug development, and establishing personalized therapies.
Collapse
Affiliation(s)
- Jemma Arakelyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Adult Solid Tumor Chemotherapy Clinic, Professor Yeolan Hematology Center, Yerevan, Armenia
| | - Davit Zohrabyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Adult Solid Tumor Chemotherapy Clinic, Professor Yeolan Hematology Center, Yerevan, Armenia
| | - Philip A Philip
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.,Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan.,Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| |
Collapse
|
13
|
Nowak KM, Chetty R. SWI/SNF-deficient cancers of the Gastroenteropancreatic tract: an in-depth review of the literature and pathology. Semin Diagn Pathol 2020; 38:195-198. [PMID: 33288347 DOI: 10.1053/j.semdp.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a large, multi-subunit ATP-dependent nucleosome remodeling complex that acts as a tumor suppressor by modulating transcription. Mutations of SWI/SNF subunits have been described in relation to developmental disorders, hereditary SWI/SNF deficiency syndromes, as well as malignancies. In this review we summarize the current literature in regards to SWI/SNF-deficient tumors of the luminal gastrointestinal tract (GIT) and pancreas. As a group they range from moderately to undifferentiated tumors composed of monotonous anaplastic cells, prominent macronucleoli and a variable rhabdoid cell component. Deficiency of a SWI/SNF subunit is typified by complete loss of nuclear staining by immunohistochemistry for respective subunit.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Division of Anatomical Pathology, Laboratory Medicine Programme, University Health Network, Toronto, Canada
| | - Runjan Chetty
- Department of Histopathology, Brighton and Sussex University Hospitals, Brighton; United Kingdom and Deciphex Ltd, Ireland.
| |
Collapse
|