1
|
Insertion Depth Modulates Protein Kinase C-δ-C1b Domain Interactions with Membrane Cholesterol as Revealed by MD Simulations. Int J Mol Sci 2023; 24:ijms24054598. [PMID: 36902029 PMCID: PMC10002858 DOI: 10.3390/ijms24054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Protein kinase C delta (PKC-δ) is an important signaling molecule in human cells that has both proapoptotic as well as antiapoptotic functions. These conflicting activities can be modulated by two classes of ligands, phorbol esters and bryostatins. Phorbol esters are known tumor promoters, while bryostatins have anti-cancer properties. This is despite both ligands binding to the C1b domain of PKC-δ (δC1b) with a similar affinity. The molecular mechanism behind this discrepancy in cellular effects remains unknown. Here, we have used molecular dynamics simulations to investigate the structure and intermolecular interactions of these ligands bound to δC1b with heterogeneous membranes. We observed clear interactions between the δC1b-phorbol complex and membrane cholesterol, primarily through the backbone amide of L250 and through the K256 side-chain amine. In contrast, the δC1b-bryostatin complex did not exhibit interactions with cholesterol. Topological maps of the membrane insertion depth of the δC1b-ligand complexes suggest that insertion depth can modulate δC1b interactions with cholesterol. The lack of cholesterol interactions suggests that bryostatin-bound δC1b may not readily translocate to cholesterol-rich domains within the plasma membrane, which could significantly alter the substrate specificity of PKC-δ compared to δC1b-phorbol complexes.
Collapse
|
2
|
Identification and characterisation of lamprey protein kinase C delta-like gene. Sci Rep 2017; 7:12214. [PMID: 28939820 PMCID: PMC5610172 DOI: 10.1038/s41598-017-12526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/15/2017] [Indexed: 01/13/2023] Open
Abstract
Protein kinase C-δ (PKC-δ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes, such as cell growth, differentiation, and apoptosis. Lampreys belong to the most primitive class of vertebrates, and there is little information on PKC-δ in these animals. In this study, a PKC-δ-like cDNA sequence and deduced PKC-δ-like amino acid sequence were identified in the Japanese lamprey (Lampetra japonica). The PKC-δ-like gene shared approximately 60% sequence identity with its homologs in jawed vertebrates. The anti-PKC-δ-like polyclonal antibodies were well prepared, and experiments showed that PKC-δ-like was primarily distributed in the supraneural body of the lamprey. Both mRNA and protein levels of PKC-δ-like in supraneural body cells were increased after incubation with cis-diaminedichloroplatinum (CDDP). Moreover, PKC-δ-like protein induced the apoptosis of HEK-293T cells. In addition, the activation of PKC-δ-like resulted in apoptosis. Conversely, the inhibition of PKC-δ-like activity disrupted the CDDP-mediated induction of cellular apoptosis. These results indicate that PKC-δ-like identified in lampreys might play an important role in apoptosis in jawless vertebrates.
Collapse
|
3
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Kim SY, Park S, Yoo S, Rho JK, Jun ES, Chang S, Kim KK, Kim SC, Kim I. Downregulation of X-linked inhibitor of apoptosis protein by '7-Benzylidenenaltrexone maleate' sensitizes pancreatic cancer cells to TRAIL-induced apoptosis. Oncotarget 2017; 8:61057-61071. [PMID: 28977846 PMCID: PMC5617406 DOI: 10.18632/oncotarget.17841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential biological anticancer agent. However, a wide range of human primary cancers, including pancreatic cancer, display resistance to apoptosis induction by TRAIL. Therefore, this resistance needs to be overcome to allow TRAIL to be successfully used in cancer therapy. In this study, we performed a compound screen to isolate TRAIL sensitizers and found that one of the identified compounds, 7-benzylidenenaltrexone maleate (BNTX), sensitized pancreatic cancer cells to TRAIL-induced apoptotic cell death. The combination of BNTX with TRAIL promoted the release of cytochrome c from mitochondria into cytosol with caspase activation and a resulting increase in annexin V-stained cells. From a mechanistic perspective, we found that BNTX downregulated X-linked inhibitor of apoptosis protein (XIAP) expression when used in combination with TRAIL, and found that TRAIL-induced apoptosis was augmented by siRNA-mediated knockdown of XIAP. We further demonstrated that BNTX promoted the ubiquitin/proteasome-dependent degradation of XIAP protein via protein kinase C (PKC) alpha/AKT pathway inhibition. Moreover, combined treatment by BNTX with TRAIL suppressed growth of pancreatic tumor xenograft of animal model. Therefore, we suggest that inhibitor of apoptosis protein-mediated resistance of pancreatic cancer cells to anticancer therapeutics can be overcome by inhibiting the PKCα/AKT pathway.
Collapse
Affiliation(s)
- So Young Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea
| | - Sojung Park
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea
| | - SeonA Yoo
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea
| | - Jin Kyung Rho
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Sung Jun
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung Kon Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Song Cheol Kim
- Division of HBP Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505 South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| |
Collapse
|
5
|
Abstract
In preclinical studies, protein kinase C (PKC) enzymes have been implicated in regulating many aspects of pancreatic cancer development and progression. However, clinical Phase I or Phase II trials with compounds targeting classical PKC isoforms were not successful. Recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. Members of these two subgroups converge signaling induced by mutant Kras, growth factors and inflammatory cytokines. Different approaches for the development of inhibitors for atypical PKC and novel PKC have been described; and new compounds include allosteric inhibitors and inhibitors that block ATP binding.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Building, Room 306, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Kyuno D, Yamaguchi H, Ito T, Kono T, Kimura Y, Imamura M, Konno T, Hirata K, Sawada N, Kojima T. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer. World J Gastroenterol 2014; 20:10813-10824. [PMID: 25152584 PMCID: PMC4138461 DOI: 10.3748/wjg.v20.i31.10813] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.
Collapse
|
7
|
Peng F, Li X, Jiang JX, Wang M, Tian R, Xu M, Guo XJ, Qin RY. Staurosporine inhibits cell proliferation and induces apoptosis in pancreatic cancer cell line Panc-1. Shijie Huaren Xiaohua Zazhi 2013; 21:2578-2584. [DOI: 10.11569/wcjd.v21.i25.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of staurosporine (ST) on cell proliferation and apoptosis in pancreatic cancer cell line Panc-1, and to explore the possible mechanisms involved.
METHODS: After Panc-1 cells were treated with different concentrations of ST for different durations, cell proliferation was assessed by CCK-8 method, cell apoptosis was detected by Hoechst 33258 staining and flow cytometry, cell cycle distribution was investigated by flow cytometry, and expression of cyclin A, cyclin D1, Cdk4 and P21 proteins was detected by Western blot.
RESULTS: ST significantly inhibited the proliferation of Panc-1 cells (P < 0.05) in a concentration- and time-dependent manner. Treatment with ST significantly induced apoptosis of Panc-1 cells, and the apoptosis rate of Panc-1 cells treated with ST increased significantly compared with control cells (P < 0.05). Treatment with ST induced cell cycle arrest in G1 phase (P < 0.05). Moreover, ST treatment significantly decreased the expression of cyclin D1 and Cdk4 proteins and increased the expression of P21 protein in Panc-1 cells (all P < 0.05). Low concentrations of ST raised the expression of cyclin A in Panc-1 cells, while high concentrations of ST reduced the expression of cyclin A (P < 0.05).
CONCLUSION: ST significantly inhibits proliferation and induces apoptosis of Panc-1 cells possibly by inducing cell cycle arrest in G1 phase.
Collapse
|
8
|
Kyuno D, Kojima T, Yamaguchi H, Ito T, Kimura Y, Imamura M, Takasawa A, Murata M, Tanaka S, Hirata K, Sawada N. Protein kinase Cα inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 2013; 34:1232-43. [PMID: 23389293 DOI: 10.1093/carcin/bgt057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein kinase Cα (PKCα) is highly expressed in pancreatic cancer. However, the effects of PKCα on Snail and claudin-1, which play crucial roles in epithelial cell polarity during epithelial-mesenchymal transition (EMT), remain unclear. In this study, we investigated the mechanisms of regulation of Snail and claudin-1 via a PKCα signal pathway during EMT in pancreatic cancer cells and in normal human pancreatic duct epithelial cells (HPDEs). By immunostaining, overexpression of PKCα and downregulation of claudin-1 were observed in poorly differentiated human pancreatic cancer tissues and the pancreatic cancer cell line PANC-1. Treatment with the PKCα inhibitor Gö6976 transcriptionally decreased Snail and increased claudin-1 in PANC-1 cells. The PKCα inhibitor prevented upregulation of Snail and downregulation of claudin-1 during EMT induced by transforming growth factor-β1 (TGF-β1) treatment and under hypoxia in PANC-1 cells. The effects of the PKCα inhibitor were in part regulated via an extracellular signal-regulated kinase (ERK) signaling pathway. The PKCα inhibitor also prevented downregulation of the barrier function and fence function during EMT in well-differentiated pancreatic cancer cell line HPAC. In normal HPDEs, the PKCα inhibitor transcriptionally induced not only claudin-1 but also claudin-4, -7 and occludin without a change of Snail. Treatment with the PKCα inhibitor in normal HPDEs prevented downregulation of claudin-1 and occludin by TGF-β1 treatment and enhanced upregulation of claudin-1, -4, -7 and occludin under hypoxia. These findings suggest that PKCα regulates claudin-1 via Snail- and mitogen-activated protein kinase/ERK-dependent pathways during EMT in pancreatic cancer. Thus, PKCα inhibitors may be potential therapeutic agents against the malignancy of human pancreatic cancer cells.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kojima T, Sawada N. Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells. Ann N Y Acad Sci 2012; 1257:85-92. [PMID: 22671593 DOI: 10.1111/j.1749-6632.2012.06579.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the regulation of tight junction molecules in normal human pancreatic duct epithelial (HPDE) cells and pancreatic cancer cells, we introduced the human telomerase reverse transcriptase (hTERT) gene into HPDE cells in primary culture and compared them to pancreatic cancer cell lines. The hTERT-transfected HPDE cells were positive for PDE markers and expressed claudin-1, claudin-4, claudin-7, and claudin-18, occludin, tricellulin, marvelD3, JAM-A, zonula occludens (ZO)-1, and ZO-2. The tight junction molecules, including claudin-4 and claudin-18 of normal HPDE cells, were in part regulated via a protein kinase C signal pathway by transcriptional control. In addition, claudin-18 in normal HPDE cells and pancreatic cancer cells was markedly induced by a PKC activator, and claudin-18 in pancreatic cancer cells was also modified by DNA methylation. In the marvel family of normal HPDE cells and pancreatic cancer cells, tricellulin was upregulated via a c-Jun N-terminal kinase pathway, and marvelD3 was downregulated during Snail-induced epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Japan.
| | | |
Collapse
|
10
|
The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. J Gastrointest Cancer 2012; 40:1-9. [PMID: 22710569 DOI: 10.1007/s12029-009-9071-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer-stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?
Collapse
|
11
|
Protein kinase Cα inhibitor enhances the sensitivity of human pancreatic cancer HPAC cells to Clostridium perfringens enterotoxin via claudin-4. Cell Tissue Res 2011; 346:369-81. [PMID: 22160590 DOI: 10.1007/s00441-011-1287-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/09/2011] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) is overexpressed in cancer, including pancreatic cancer, compared with normal tissue. Moreover, PKCα is considered one of the biomarkers for the diagnosis of cancers. In several human cancers, the claudin tight junction molecules are abnormally regulated and are thus promising molecular targets for diagnosis and therapy with Clostridium perfringens enterotoxin (CPE). In order to investigate the changes of tight junction functions of claudins via PKCα activation in pancreatic cancer cells, the well-differentiated human pancreatic cancer cell line HPAC, with its highly expressed tight junction molecules and well-developed barrier function, was treated with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment with TPA modified the activity of phosphoPKCα and caused an increase of the Snail family members Snail, Slug and Smad-interacting protein 1 and a decrease of E-cadherin. In HPAC cells treated with TPA, downregulation of claudin-1 and mislocalization of claudin-4 and occludin around the nuclei were observed, together with a decrease in the numbers of tight junction strands and an increase in phosphorylation of claudin-4. The barrier function and the cytotoxicity of CPE were significantly decreased on TPA treatment. All such changes after TPA treatment were prevented by inhibitors of panPKC and PKCα. These findings suggest that, in human pancreatic cancer cells, PKCα activation downregulates tight junction functions as a barrier and as a receptor of CPE via the modification of claudin-1 and -4 during epithelial to mesenchymal transition-like changes. PKCα inhibitors might represent potential therapeutic agents against human pancreatic cancer cells by use of CPE cytotoxicity via claudin-4.
Collapse
|
12
|
Ito T, Kojima T, Yamaguchi H, Kyuno D, Kimura Y, Imamura M, Takasawa A, Murata M, Tanaka S, Hirata K, Sawada N. Transcriptional regulation of claudin-18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells. J Cell Biochem 2011; 112:1761-72. [PMID: 21381080 DOI: 10.1002/jcb.23095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since claudin-18 (Cldn18) is overexpressed in precursor lesion PanIN and pancreatic duct carcinoma, it serves as a diagnostic marker and a target of immunotherapy. The stomach isoform of Cldn18, Cldn18a2 is regulated via a PKC/MAPK/AP-1-dependent pathway in PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated gastric cancer cells. However, little is known about how Cldn18 is regulated, not only in pancreatic duct carcinoma but also in normal human pancreatic duct epithelial cells (HPDE cells). In the present study, four pancreatic cancer cell lines, HPAF-II, HPAC, PANC-1 and BXPC3, and hTERT-HPDE cells in which the hTERT gene was introduced into HPDE cells in primary culture, were treated with TPA. In all human pancreatic cancer cell lines and hTERT-HPDE cells, Cldn18 mRNA indicated as Cldn18a2 was markedly induced by TPA and in well- or moderately differentiated human pancreatic cancer cells HPAF-II and HPAC and hTERT-HPDE cells, the protein was also strongly increased. The upregulation of Cldn18 by TPA in human pancreatic cancer cell lines was prevented by inhibitors of PKCδ, PKCε, and PKCα, whereas the upregulation of Cldn18 by TPA in hTERT-HPDE cells was prevented by inhibitors of PKCδ, PKCθ, and PKCα. Furthermore, a CpG island was identified within the coding sequence of the Cldn18 gene and treatment with the demethylating agent 5-azadeoxycytidine enhanced upregulation of Cldn18 by TPA in HPAF-II and HPAC, but not hTERT-HPDE cells. Our findings suggest that in human pancreatic cancer cells, Cldn18 is primarily regulated at the transcriptional level via specific PKC signaling pathways and modified by DNA methylation.
Collapse
Affiliation(s)
- Tatsuya Ito
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang Y, DiVittore NA, Kaiser JM, Shanmugavelandy SS, Fritz JL, Heakal Y, Tagaram HRS, Cheng H, Cabot MC, Staveley-O'Carroll KF, Tran MA, Fox TE, Barth BM, Kester M. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther 2011; 12:574-85. [PMID: 21795855 DOI: 10.4161/cbt.12.7.15971] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Poor prognosis cancers, such as pancreatic cancer, represent inherent challenges for ceramide-based nanotherapeutics due to metabolic pathways, which neutralize ceramide to less toxic or pro-oncogenic metabolites. We have recently developed a novel 80 nanometer diameter liposomal formulation that incorporates 30 molar percent C6-ceramide, a bioactive lipid that is pro-apoptotic to many cancer cells, but not to normal cells. In this manuscript, we evaluated the efficacy of combining nanoliposomal C6-ceramide (Lip-C6) with either gemcitabine or an inhibitor of glucosylceramide synthase. We first assessed the biological effect of Lip-C6 in PANC-1 cells, a gemcitabine-resistant human pancreatic cancer cell line, and found that low doses alone did not induce cell toxicity. However, cytotoxicity was achieved by combining Lip-C6 with either non-toxic sub-therapeutic concentrations of gemcitabine or with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Furthermore, these combinations with Lip-C6 cooperatively inhibited PANC-1 tumor growth in vivo. Mechanistically, Lip-C6 inhibited pro-survival Akt and Erk signaling, whereas the nucleoside analog gemcitabine did not. Furthermore, by including PDMP within the nanoliposomes, which halted ceramide neutralization as evidenced by LC-MS3, the cytotoxic effects of Lip-C6 were enhanced. Collectively, we have demonstrated that nanoliposomal ceramide can be an effective anti-pancreatic cancer therapeutic in combination with gemcitabine or an inhibitor of ceramide neutralization.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine, Penn State College of Medicine; Hershey, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim MJ, Kim RK, Yoon CH, An S, Hwang SG, Suh Y, Park MJ, Chung HY, Kim IG, Lee SJ. Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J Cell Sci 2011; 124:3084-94. [DOI: 10.1242/jcs.080119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain tumors frequently recur or progress as focal masses after treatment with ionizing radiation. However, the mechanisms underlying the repopulation of tumor cells after radiation have remained unclear. In this study, we show that cellular signaling from Abelson murine leukemia viral oncogene homolog (Abl) to protein kinase Cδ (PKCδ) is crucial for fractionated-radiation-induced expansion of glioma-initiating cell populations and acquisition of resistance to anticancer treatments. Treatment of human glioma cells with fractionated radiation increased Abl and PKCδ activity, expanded the CD133-positive (CD133+) cell population that possesses tumor-initiating potential and induced expression of glioma stem cell markers and self-renewal-related proteins. Moreover, cells treated with fractionated radiation were resistant to anticancer treatments. Small interfering RNA (siRNA)-mediated knockdown of PKCδ expression blocked fractionated-radiation-induced CD133+ cell expansion and suppressed expression of glioma stem cell markers and self-renewal-related proteins. It also suppressed resistance of glioma cells to anticancer treatments. Similarly, knockdown of Abl led to a decrease in CD133+ cell populations and restored chemotherapeutic sensitivity. It also attenuated fractionated-radiation-induced PKCδ activation, suggesting that Abl acts upstream of PKCδ. Collectively, these data indicate that fractionated radiation induces an increase in the glioma-initiating cell population, decreases cellular sensitivity to cancer treatment and implicates activation of Abl–PKCδ signaling in both events. These findings provide insights that might prove pivotal in the context of ionising-radiation-based therapeutic interventions for brain tumors.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea
| | - Rae-Kwon Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Chang-Hwan Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Sungkwan An
- Functional Genoproteome Research Centre, Konkuk University, Seoul 143-701, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Yongjoon Suh
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Hee Young Chung
- Department of Microbiology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea
| | - Su-Jae Lee
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
15
|
Hussain SK, Broederdorf LJ, Sharma UM, Voth DE. Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation. Front Microbiol 2010; 1:137. [PMID: 21772829 PMCID: PMC3119423 DOI: 10.3389/fmicb.2010.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/04/2010] [Indexed: 11/24/2022] Open
Abstract
Coxiella burnetii is the etiologic agent of human Q fever and targets alveolar phagocytic cells in vivo wherein the pathogen generates a phagolysosome-like parasitophorous vacuole (PV) for replication. C. burnetii displays a prolonged growth cycle, making PV maintenance critical for bacterial survival. Previous studies showed that C. burnetii mediates activation of eukaryotic kinases to inhibit cell death, indicating the importance of host signaling during infection. In the current study, we examined the role of eukaryotic kinase signaling in PV establishment. A panel of 113 inhibitors was analyzed for their impact on C. burnetii infection of human THP-1 macrophage-like cells and HeLa cells. Inhibition of 11 kinases or two phosphatases altered PV formation and prevented pathogen growth, with most inhibitor-treated cells harboring organisms in tight-fitting phagosomes, indicating kinase/phosphatase activation is required for PV maturation. Five inhibitors targeted protein kinase C (PKC), suggesting a critical role for this protein during intracellular growth. The PKC-specific substrate MARCKS was phosphorylated at 24 h post-infection and remained phosphorylated through 5 days post-infection, indicating prolonged regulation of the PKC pathway by C. burnetii. Infection also altered the activation status of p38, myosin light chain kinase, and cAMP-dependent protein kinase, suggesting C. burnetii subverts numerous phosphorylation cascades. These results underscore the importance of intracellular host signaling for C. burnetii PV biogenesis.
Collapse
Affiliation(s)
- S Kauser Hussain
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | |
Collapse
|
16
|
Abraham I, Jain S, Wu CP, Khanfar MA, Kuang Y, Dai CL, Shi Z, Chen X, Fu L, Ambudkar SV, El Sayed K, Chen ZS. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol 2010; 80:1497-506. [PMID: 20696137 DOI: 10.1016/j.bcp.2010.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/24/2010] [Accepted: 08/02/2010] [Indexed: 11/17/2022]
Abstract
Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified sipholenone E, sipholenol L and siphonellinol D as potent reversals of MDR in cancer cells. These compounds enhanced the cytotoxicity of several P-gp substrate anticancer drugs, including colchicine, vinblastine and paclitaxel, and significantly reversed the MDR-phenotype in P-gp-overexpressing MDR cancer cells KB-C2 in a dose-dependent manner. Moreover, these three sipholanes had no effect on the response to cytotoxic agents in cells lacking P-gp expression or expressing MRP1 (ABCC1) or MRP7 (ABCC10) or breast cancer resistance protein (BCRP/ABCG2). All three sipholanes (IC(50) >50 μM) were not toxic to all the cell lines that were used. [(3)H]-Paclitaxel accumulation and efflux studies demonstrated that all three triterpenoids time-dependently increased the intracellular accumulation of [(3)H]-paclitaxel by directly inhibiting P-gp-mediated drug efflux. Sipholanes also inhibited calcein-AM transport from P-gp-overexpressing cells. The Western blot analysis revealed that these three triterpenoids did not alter the expression of P-gp. However, they stimulated P-gp ATPase activity in a concentration-dependent manner and inhibited the photolabeling of this transporter with its transport substrate [(125)I]-iodoarylazidoprazosin. In silico molecular docking aided the virtual identification of ligand binding sites of these compounds. In conclusion, sipholane triterpenoids efficiently inhibit the function of P-gp through direct interactions and may represent potential reversal agents for the treatment of MDR.
Collapse
Affiliation(s)
- Ioana Abraham
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The current 5-year survival rate of pancreatic cancer is about 3% and the median survival less than 6 months because the chemotherapy and radiation therapy presently available provide only marginal benefit. Clearly, pancreatic cancer requires new therapeutic concepts. Recently, the kinase inhibitors imatinib and gefitinib, developed to treat chronic myelogenous leukaemia and breast cancer, respectively, gave very good results. Kinases are deregulated in many diseases, including cancer. Given that phosphorylation controls cell survival signalling, strategies targeting kinases should obviously improve cancer treatment. The purpose of this review is to summarize the present knowledge on kinases potentially usable as therapeutic targets in the treatment of pancreatic cancer. All clinical trials using available kinase inhibitors in monotherapy or in combination with chemotherapeutic drugs failed to improve survival of patients with pancreatic cancer. To detect kinases relevant to this disease, we undertook a systematic screening of the human kinome to define a 'survival kinase' catalogue for pancreatic cells. We selected 56 kinases that are potential therapeutic targets in pancreatic cancer. Preclinical studies using combined inhibition of PAK7, MAP3K7 and CK2 survival kinases in vitro and in vivo showed a cumulative effect on apoptosis induction. We also observed that these three kinases are rather specific of pancreatic cancer cells. In conclusion, if kinase inhibitors presently available are unfortunately not efficient for treating pancreatic cancer, recent data suggest that inhibitors of other kinases, involved more specifically in pancreatic cancer development, might, in the future, become interesting therapeutic targets.
Collapse
Affiliation(s)
- Valentin Giroux
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille Cedex 9, France
| | | | | |
Collapse
|
18
|
Abstract
OBJECTIVE Our objective was to study the role of protein kinase C delta (PKCdelta) in the progression of human pancreatic carcinoma. METHODS Protein kinase C delta expression in human ductal carcinoma (n = 22) was studied by immunohistochemistry. We analyzed the effect of PKCdelta overexpression on in vivo and in vitro properties of human ductal carcinoma cell line PANC1. RESULTS Human ductal carcinomas showed PKCdelta overexpression compared with normal counterparts. In addition, in vitro PKCdelta-PANC1 cells showed increased anchorage-independent growth and higher resistance to serum starvation and to treatment with cytotoxic drugs. Using pharmacological inhibitors, we determined that phosphatidylinositol-3-kinase and extracellular receptor kinase pathways were involved in the proliferation of PKCdelta-PANC1. Interestingly, PKCdelta-PANC1 cells showed a less in vitro invasive ability and an impairment in their ability to migrate and to secrete the proteolytic enzyme matrix metalloproteinase-2. In vivo experiments indicated that PKCdelta-PANC1 cells were more tumorigenic, as they developed tumors with a significantly lower latency and a higher growth rate with respect to the tumors generated with control cells. Besides, only PKCdelta-PANC1 cells developed lung metastasis. CONCLUSION Our results showed that the overexpression of PKCdelta in PANC1 cells induced a more malignant phenotype in vivo, probably through the modulation of cell proliferation and survival, involving phosphatidylinositol-3-kinase and extracellular receptor kinase signaling pathways.
Collapse
|
19
|
Francis H, Onori P, Gaudio E, Franchitto A, DeMorrow S, Venter J, Kopriva S, Carpino G, Mancinelli R, White M, Meng F, Vetuschi A, Sferra R, Alpini G. H3 histamine receptor-mediated activation of protein kinase Calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo. Mol Cancer Res 2009; 7:1704-13. [PMID: 19825989 DOI: 10.1158/1541-7786.mcr-09-0261] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Histamine regulates functions via four receptors (HRH1, HRH2, HRH3, and HRH4). The d-myo-inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/protein kinase C (PKC)/mitogen-activated protein kinase pathway regulates cholangiocarcinoma growth. We evaluated the role of HRH3 in the regulation of cholangiocarcinoma growth. Expression of HRH3 in intrahepatic and extrahepatic cell lines, normal cholangiocytes, and human tissue arrays was measured. In Mz-ChA-1 cells stimulated with (R)-(alpha)-(-)-methylhistamine dihydrobromide (RAMH), we measured (a) cell growth, (b) IP(3) and cyclic AMP levels, and (c) phosphorylation of PKC and mitogen-activated protein kinase isoforms. Localization of PKCalpha was visualized by immunofluorescence in cell smears and immunoblotting for PKCalpha in cytosol and membrane fractions. Following knockdown of PKCalpha, Mz-ChA-1 cells were stimulated with RAMH before evaluating cell growth and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. In vivo experiments were done in BALB/c nude mice. Mice were treated with saline or RAMH for 44 days and tumor volume was measured. Tumors were excised and evaluated for proliferation, apoptosis, and expression of PKCalpha, vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF receptor 2, and VEGF receptor 3. HRH3 expression was found in all cells. RAMH inhibited the growth of cholangiocarcinoma cells. RAMH increased IP(3) levels and PKCalpha phosphorylation and decreased ERK1/2 phosphorylation. RAMH induced a shift in the localization of PKCalpha expression from the cytosolic domain into the membrane region of Mz-ChA-1 cells. Silencing of PKCalpha prevented RAMH inhibition of Mz-ChA-1 cell growth and ablated RAMH effects on ERK1/2 phosphorylation. In vivo, RAMH decreased tumor growth and expression of VEGF and its receptors; PKCalpha expression was increased. RAMH inhibits cholangiocarcinoma growth by PKCalpha-dependent ERK1/2 dephosphorylation. Modulation of PKCalpha by histamine receptors may be important in regulating cholangiocarcinoma growth.
Collapse
Affiliation(s)
- Heather Francis
- Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morse MA, Hall JR, Plate JMD. Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer. Expert Opin Biol Ther 2009; 9:331-9. [PMID: 19216622 DOI: 10.1517/14712590802715756] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Vaccines for pancreatic cancer have been challenged by a number of factors, especially the immunosuppressive microenvironment within the tumor that allows for escape from immune surveillance. OBJECTIVE/METHODS We sought to identify results that define mechanisms of pancreatic-cancer-associated immunosuppression and strategies that might be useful to overcome them thereby resulting in effective immune responses to cancer vaccines capable of deleting pancreatic cancer cells. RESULTS/CONCLUSION Immunosuppressive tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg) reside in tumors, and their products along with tumor derived products (such as VEGF, TGFbeta and IL-10), create a microenvironment that counters immune activation and attack. Immunotherapy with cancer vaccines must include strategies to modulate these immunosuppressive cell types and tumor byproducts. Clinical trials are beginning to test these strategies.
Collapse
|
21
|
Ali S, Al-Sukhun S, El-Rayes BF, Sarkar FH, Heilbrun LK, Philip PA. Protein kinases C isozymes are differentially expressed in human breast carcinomas. Life Sci 2009; 84:766-71. [PMID: 19324060 DOI: 10.1016/j.lfs.2009.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 03/13/2009] [Indexed: 11/30/2022]
Abstract
AIMS The protein kinase C (PKC) family of enzymes has been implicated in cellular proliferation, differentiation, and apoptosis. However, the distribution of specific PKC isoforms with varying functions in normal and malignant human tissues remains to be determined. The objective of this study was to investigate the expression of certain PKC isoforms (alpha, betaI, betaII, epsilon) in human breast cancer specimens relative to adjacent uninvolved tissue (n=24) and in the normal breast tissue obtained from patients undergoing reduction mammoplasty (n=12). MAIN METHODS Western blot analysis using PKC isoform specific antibodies was performed on tissue extracts from breast tumors, adjacent uninvolved tissues, and reduction mammoplasty tissues. KEY FINDINGS Mean levels of cytosolic and membrane PKC-alpha, PKC-betaI, and PKC-betaII were significantly higher in the cancer specimens than in the adjacent uninvolved breast tissues (Wilcoxon signed-ranks test; P<0.05 for each, after adjustment for multiple comparisons). There was a notably higher mean level of membrane PKC-betaII isozyme in Her-2 positive and in poorly differentiated tumors. No significant differences were observed when normal tissue adjacent to tumor was compared to breast tissue obtained from reduction mammoplasty specimens. SIGNIFICANCE Higher level of PKC-alpha, PKC-betaI, and PKC-betaII in cancer specimens and higher level of PKC-betaII in Her-2 positive tumors require further exploration of the intracellular pathways involving PKC-alpha and -beta isoforms in breast cancer because both could be specific targets for the development of new therapies and for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Shadan Ali
- Division of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | | | |
Collapse
|
22
|
Fraser CC. G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 2009; 27:320-50. [PMID: 18853342 DOI: 10.1080/08830180802262765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex intracellular network interactions regulate gene expression and cellular behavior. Whether at the site of inflammation or within a tumor, individual cells are exposed to a plethora of signals. The transcription factor nuclear factor-kappaB (NF-kappaB) regulates genes that control key cellular activities involved in inflammatory diseases and cancer. NF-kappaB is regulated by several distinct signaling pathways that may be activated individually or simultaneously. Multiple ligands and heterologous cell-cell interactions have an impact on NF-kappaB activity. The G protein-coupled receptor (GPCR) superfamily makes up the largest class of transmembrane receptors in the human genome and has multiple molecularly distinct natural ligands. GPCRs regulate proliferation, differentiation, and chemotaxis and play a major role in inflammatory diseases and cancer. Both GPCRs and NF-kappaB have been, and continue to be, major targets for drug discovery. A clear understanding of network interactions between GPCR signaling pathways and those that control NF-kB may be valuable for the development of better drugs and drug combinations.
Collapse
|
23
|
Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 2008; 35:1-8. [PMID: 18778896 DOI: 10.1016/j.ctrv.2008.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/11/2022]
Abstract
Protein kinase C is a family of serine/threonine kinases. The PKC family is made up of at least 12 isozymes, which have a role in cell proliferation, differentiation, angiogenesis, and apoptosis. Activation of PKC isozyme is dependent on tyrosine-kinase receptors and G-protein-coupled receptors. PKC isozymes regulate multiple signaling pathways including PI3-K/Akt, MAPK, and GSK-3beta. PKC isozymes have variable roles in tumor biology which in part depend on the cell type and intracellular localization. PKC isozymes are commonly dysregulated in the cancer of the prostate, breast, colon, pancreatic, liver, and kidney. Currently, several classes of PKC inhibitors are being evaluated in clinical trials and several challenges in targeting PKC isozymes have been recently identified. In conclusion, PKC remains a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|