1
|
Hodges P, Tembo M, Kelly P. Intestinal Biopsies for the Evaluation of Environmental Enteropathy and Environmental Enteric Dysfunction. J Infect Dis 2021; 224:S856-S863. [PMID: 34273148 PMCID: PMC8687084 DOI: 10.1093/infdis/jiab372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Environmental enteric dysfunction (EED) is a syndrome characterized by impairments of digestion and absorption and intestinal barrier failure in people living in insanitary or tropical environments. There is substantial evidence that it contributes to impaired linear growth of millions of children in low- and middle-income countries, to slowed neurocognitive development, and to diminished responses to oral vaccines. It represents the functional consequences of environmental enteropathy, an asymptomatic inflammatory disorder of the mucosa, and there is considerable overlap with the enteropathy observed in severe clinical malnutrition. The majority of studies of EED have employed functional tests based on lactulose permeation to define the presence of abnormal leak in the gut. However, where intestinal biopsies can safely be collected the opportunity then arises to study the underlying enteropathy in cellular and molecular detail, as well as to measure important functional elements such as enzyme expression. The purpose of this narrative review is to summarize the current understanding of environmental enteropathy obtained from small intestinal biopsies, and prospects for future work. We review histology, electron microscopy, transcription and protein expression, physiological measures, and the microbiome. We conclude that while noninvasive biomarkers of enteropathy and intestinal dysfunction permit large-scale studies of unquestionable value, intestinal biopsies are still required to investigate pathophysiology in depth.
Collapse
Affiliation(s)
- Phoebe Hodges
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Queen Mary University of London, London, United Kingdom
| | - Mizinga Tembo
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Sanaksenaho G, Mutanen A, Godbole N, Hukkinen M, Merras-Salmio L, Kivisaari R, Kyrönlahti A, Pihlajoki M, Lohi J, Heikinheimo M, Pakarinen MP. Compromised duodenal mucosal integrity in children with short bowel syndrome after adaptation to enteral autonomy. J Pediatr Surg 2021; 56:966-974. [PMID: 33131778 DOI: 10.1016/j.jpedsurg.2020.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal adaptation has been extensively studied experimentally, but very limited data is available on human subjects. In this study we assessed intestinal adaption in humans with short bowel syndrome (SBS). METHODS We comparatively evaluated mucosal hyperplasia, inflammation, barrier function and nutrient transport using histology, immunohistochemistry and qPCR for selected 52 key genes in duodenal biopsies obtained from children with SBS after weaning off parenteral nutrition (n = 33), and matched controls without intestinal pathology (n = 12). Small bowel dilatation was assessed from contrast small bowel series. RESULTS Duodenal mucosa of SBS children showed increased histologic inflammation of lamina propria (p = 0.033) and mucosal mRNA expression of tumor necrosis factor (p = 0.027), transforming growth factor (TGF)-β2 (p = 0.006) and caveolin-1 (CAV1; p = 0.001). Villus height, crypt depth, enterocyte proliferation, apoptosis and expression of proliferation and nutrient transport genes remained unchanged. Pathologic small bowel dilatation reduced crypt depth (p = 0.045) and downregulated mRNA expression of interleukin (IL)-6 by three-fold (p = 0.008), while correlating negatively with IL6 (r = -0.609, p = 0.004). Loss of ileocecal valve (ICV) upregulated mRNA expression of toll-like receptor 4 (TLR4), TGF-β1, CAV1, several apoptosis regulating genes, and mRNA expression of zonulin (p < 0.05 for all). CONCLUSIONS Despite successful adaptation to enteral autonomy, duodenal mucosa of SBS children displayed histologic and molecular signs of abnormal inflammation and regulation of epithelial permeability, whereas no structural or molecular signs of adaptive hyperplasia or enhanced nutrient transport were observed. Excessive dilatation of the remaining small bowel paralleled impaired duodenal crypt homeostasis, while absence of ICV modified regulation of mucosal inflammation, regeneration and permeability. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Galina Sanaksenaho
- Division of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Mutanen
- Division of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nimish Godbole
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Hukkinen
- Division of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Merras-Salmio
- Department of Pediatric Gastroenterology, Pediatric Liver and Gut Research Group, Children's Hospital, Pediatric Research Centre, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Reetta Kivisaari
- HUS Medical Imaging Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- Division of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Sanaksenaho G, Mutanen A, Godbole N, Kyrönlahti A, Koivusalo A, Lohi J, Pihlajoki M, Heikinheimo M, Pakarinen MP. Parenteral Nutrition-Dependent Children With Short-Bowel Syndrome Lack Duodenal-Adaptive Hyperplasia but Show Molecular Signs of Altered Mucosal Function. JPEN J Parenter Enteral Nutr 2020; 44:1291-1300. [PMID: 31985858 DOI: 10.1002/jpen.1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although adaptive mucosal growth of the remaining small intestine is an essential compensatory mechanism to bowel resection in experimental short-bowel syndrome (SBS), only scarce clinical data are available. We studied structural and molecular mechanisms of intestinal adaptation in children with SBS. METHODS Fourteen patients, who had been dependent on parenteral nutrition (PN) since neonatal period for a median (interquartile range)1.4 (0.7-6.5) years, were studied at the age of 1.5 (1.0-6.5) years. Median length of remaining small bowel was 33 (12-60) cm, and 6 patients had their ileocecal valve preserved. Six children without gastrointestinal disorders served as age-matched and gender-matched controls. All patients underwent duodenal biopsies. Mucosal microarchitecture, proliferation, apoptosis, inflammation, and epithelial-barrier function were addressed using histology, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS Villus height, crypt depth, enterocyte proliferation, and apoptosis were similar in patients and matched controls. Messenger RNA (mRNA) expression of numerous genes regulating gut epithelial-barrier function (TGFB2, CAV1, CLDN1, MUC2, and NLRC4) was significantly altered. Of various nutrient transporters studied, only expression of SLC2A1 encoding facilitative glucose transporter GLUT1 was increased among patients, whereas RNA expression of genes encoding sodium-dependent glucose, sterol, fatty-acid, and peptide transport remained unchanged. CONCLUSION Duodenal mucosal hyperplasia has a limited role in mediating physiological adaptation following intestinal resection among PN-dependent children with SBS. Further clinical studies addressing functional significance of the observed alterations in mucosal RNA expression are warranted.
Collapse
Affiliation(s)
- Galina Sanaksenaho
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Mutanen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nimish Godbole
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Koivusalo
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Hukkinen M, Mutanen A, Pakarinen MP. Small bowel dilation in children with short bowel syndrome is associated with mucosal damage, bowel-derived bloodstream infections, and hepatic injury. Surgery 2017; 162:670-679. [DOI: 10.1016/j.surg.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/04/2023]
|