1
|
Chang HW, Lee EM, Wang Y, Zhou C, Pruss KM, Henrissat S, Chen RY, Kao C, Hibberd MC, Lynn HM, Webber DM, Crane M, Cheng J, Rodionov DA, Arzamasov AA, Castillo JJ, Couture G, Chen Y, Balcazo NP, Lebrilla CB, Terrapon N, Henrissat B, Ilkayeva O, Muehlbauer MJ, Newgard CB, Mostafa I, Das S, Mahfuz M, Osterman AL, Barratt MJ, Ahmed T, Gordon JI. Prevotella copri and microbiota members mediate the beneficial effects of a therapeutic food for malnutrition. Nat Microbiol 2024; 9:922-937. [PMID: 38503977 PMCID: PMC10994852 DOI: 10.1038/s41564-024-01628-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies.
Collapse
Affiliation(s)
- Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Lee
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kali M Pruss
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Clara Kao
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah M Lynn
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marie Crane
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA, USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, University of California, Davis, CA, USA
| | - Nikita P Balcazo
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Pesu H, Mbabazi J, Mutumba R, Savolainen O, Olsen MF, Mølgaard C, Michaelsen KF, Ritz C, Filteau S, Briend A, Mupere E, Friis H, Grenov B. Correlates of Plasma Citrulline, a Potential Marker of Enterocyte Mass, among Children with Stunting: A Cross-Sectional Study in Uganda. J Nutr 2024; 154:765-776. [PMID: 38135004 DOI: 10.1016/j.tjnut.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is associated with stunting. Citrulline, produced in mature enterocytes, may be a valuable biomarker of small intestinal enterocyte mass in the context of EED. OBJECTIVES We aimed to explore the correlates of plasma citrulline (p-cit) in children with stunting. METHODS In a cross-sectional study using baseline data from the community-based MAGNUS (milk affecting growth, cognition and the gut in child stunting) trial (ISRCTN13093195), we explored potential correlates of p-cit in Ugandan children with stunting aged 12-59 mo. Using linear regression in univariate and multivariate models, we explored associations with socioeconomics, diet, micronutrient status, and water, sanitation, and hygiene characteristics. The influence of covariates age, fasting, and systemic inflammation were also explored. RESULTS In 750 children, the mean ± standard deviation age was 32.0 ± 11.7 mo, and height-for-age z-score was -3.02 ± 0.74. P-cit, available for 730 children, differed according to time fasted and was 20.7 ± 8.9, 22.3 ± 10.6 and 24.2 ± 13.1 μmol/L if fasted <2, 2-5 and >5 h, respectively. Positive correlates of p-cit were age [0.07; 95% confidence interval (CI): 0.001, 0.15 μmol/L] and log10 serum insulin-like growth factor-1 (8.88; 95% CI: 5.09, 12.67 μmol/L). With adjustment for systemic inflammation, the association with serum insulin-like growth factor-1 reduced (4.98; 95% CI: 0.94, 9.03 μmol/L). Negative correlates of p-cit included food insecurity, wet season (-3.12; 95% CI: -4.97, -1.26 μmol/L), serum C-reactive protein (-0.15; 95% CI: -0.20, -0.10 μmol/L), serum α1-acid glycoprotein (-5.34; 95% CI: -6.98, -3.70 μmol/L) and anemia (-1.95; 95% CI: -3.72, -0.18 μmol/L). Among the negatively correlated water, sanitation, and hygiene characteristics was lack of soap for handwashing (-2.53; 95% CI: -4.82, -0.25 μmol/L). Many associations attenuated with adjustment for inflammation. CONCLUSIONS Many of the correlates of p-cit are characteristic of populations with a high EED prevalence. Systemic inflammation is strongly associated with p-cit and is implicated in EED and stunting. Adjustment for systemic inflammation attenuates many associations, reflecting either confounding, mediation, or both. This study highlights the complex interplay between p-cit and systemic inflammation.
Collapse
Affiliation(s)
- Hannah Pesu
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Mbabazi
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Paediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rolland Mutumba
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Paediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Otto Savolainen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Faculty of Health Sciences, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mette F Olsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Suzanne Filteau
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - André Briend
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; Tampere Centre for Child Health Research, Tampere University, Tampere, Finland
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henrik Friis
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Benedikte Grenov
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Nunes G, Guimarães M, Coelho H, Carregosa R, Oliveira C, Pereira SS, Alves de Matos A, Fonseca J. Prolonged Fasting Induces Histological and Ultrastructural Changes in the Intestinal Mucosa That May Reduce Absorption and Revert after Enteral Refeeding. Nutrients 2023; 16:128. [PMID: 38201958 PMCID: PMC10780540 DOI: 10.3390/nu16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Malnutrition is usual in patients referred for endoscopic gastrostomy (PEG). Refeeding syndrome is rarely observed in PEG-fed patients, which could possibly be associated with reduced absorption induced by prolonged starvation. Objective: In patients submitted to PEG after a significant period of fasting, the present study aims to: 1. evaluate the histological/ultrastructural initial changes in the intestinal mucosa, potentially associated with reduced absorption, and 2. assess if these changes could reverse with enteral refeeding. Methods: The present study is an observational, prospective, controlled study. Adult patients with ingestion below 50% of daily needs for at least one month and/or diagnosis of malnutrition were enrolled. Duodenal biopsies were taken at baseline and after 3-6 months of PEG feeding, which then underwent histological/ultrastructural analysis. Random healthy individuals were used as controls. Results: A total of 30 patients (16 men/14 women) aged 67.1 ± 13.5 years were included. Malnutrition was found in 40% of patients. Approximately 14 patients completed follow-up during both periods (46.7%). At baseline: duodenal mucosal atrophy was evident in three patients (10%); the median villi length (MVL) was 0.4 mm (0.25-0.6 mm), with it being shorter than the controls, which was 0.6 mm (0.4-0.7 mm) (p = 0.006); ultrastructural changes included focal shortening, bending, and disruption of enterocyte microvilli, the presence of citoplasmatic autophagic vacuoles, dilation and vesiculation of the smooth endoplasmic reticulum, and the presence of dilated intercellular spaces with basement membrane detachment. After refeeding, most patients displayed normal histology (92.9%) and increase MVL (p < 0.001), ultrastructural changes disappeared, and enterocytes resumed a normal appearance, although retaining scarce, small, dense bodies in apical regions from the evolution of previous autophagy. Conclusions: Prolonged fasting induces histological and ultrastructural changes in the intestinal mucosa that may reflect impaired absorption in the early post-PEG period. These changes were reverted after refeeding with enteral nutrition.
Collapse
Affiliation(s)
- Gonçalo Nunes
- Gastroenterology Department, GENE—Artificial Feeding Team, Hospital Garcia de Orta, 2805-267 Almada, Portugal
- ICBAS-UP—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- PaMNEC—Grupo de Patologia Médica, Nutrição e Estudos Clínicos, Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
| | - Marta Guimarães
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR—Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Hélder Coelho
- Pathology Department, Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Ricardo Carregosa
- Cmicros—Centro de Microscopia Eletrónica e Histopatologia, CiiEM—Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal
| | - Cátia Oliveira
- Gastroenterology Department, GENE—Artificial Feeding Team, Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Sofia S. Pereira
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR—Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - António Alves de Matos
- Cmicros—Centro de Microscopia Eletrónica e Histopatologia, CiiEM—Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal
| | - Jorge Fonseca
- Gastroenterology Department, GENE—Artificial Feeding Team, Hospital Garcia de Orta, 2805-267 Almada, Portugal
- ICBAS-UP—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- PaMNEC—Grupo de Patologia Médica, Nutrição e Estudos Clínicos, Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
| |
Collapse
|
4
|
Chang HW, Lee EM, Wang Y, Zhou C, Pruss KM, Henrissat S, Chen RY, Kao C, Hibberd MC, Lynn HM, Webber DM, Crane M, Cheng J, Rodionov DA, Arzamasov AA, Castillo JJ, Couture G, Chen Y, Balcazo NP, Lebrilla CB, Terrapon N, Henrissat B, Ilkayeva O, Muehlbauer MJ, Newgard CB, Mostafa I, Das S, Mahfuz M, Osterman AL, Barratt MJ, Ahmed T, Gordon JI. Prevotella copri-related effects of a therapeutic food for malnutrition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553030. [PMID: 37645712 PMCID: PMC10461977 DOI: 10.1101/2023.08.11.553030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1-5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the 'metagenome assembled genomes' (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by two Prevotella copri MAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed 'reverse translation' experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or without P. copri isolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role for P. copri in mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members including Bifidobacterium longum subsp. infantis, and demonstrate the effects of P. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.
Collapse
Affiliation(s)
- Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Evan M. Lee
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kali M. Pruss
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Robert Y. Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Clara Kao
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Matthew C. Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hannah M. Lynn
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Daniel M. Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marie Crane
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Juan J. Castillo
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Nikita P. Balcazo
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | | | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710 USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710 USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
5
|
Citrulline and kynurenine to tryptophan ratio: potential EED (environmental enteric dysfunction) biomarkers in acute watery diarrhea among children in Bangladesh. Sci Rep 2023; 13:1416. [PMID: 36697429 PMCID: PMC9876903 DOI: 10.1038/s41598-023-28114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Two emerging biomarkers of environmental enteric dysfunction (EED) include plasma citrulline (CIT), and the kynurenine (KYN): tryptophan (TRP)/ (KT) ratio. We sought to investigate the plasma concentration of CIT and KT ratio among the children having dehydrating diarrhea and examine associations between concentrations of CIT and KT ratio with concurrent factors. For this analysis, we used cross-sectional data from a total of 102, 6-36 months old male children who suffered from non-cholera acute watery diarrhea and had some dehydration admitted to an urban diarrheal hospital, in Bangladesh. CIT, TRP, and KYN concentrations were determined at enrollment from plasma samples using ELIZA. At enrollment, the mean plasma CIT concentration was 864.48 ± 388.55 µmol/L. The mean plasma kynurenine, tryptophan concentrations, and the KT ratio (× 1000) were 6.93 ± 3.08 µmol/L, 33.44 ± 16.39 µmol/L, and 12.12 ± 18.10, respectively. With increasing child age, KYN concentration decreased (coefficient: - 0.26; 95%CI: - 0.49, - 0.04; p = 0.021); with increasing lymphocyte count, CIT concentration decreased (coef.: - 0.01; 95% CI: - 0.02,0.001, p = 0.004); the wasted child had decreased KT ratio (coef.: - 0.6; 95% CI: - 1.18, - 0.02; p = 0.042) after adjusting for potential covariates. The CIT concentration was associated with blood neutrophils (coef.: 0.02; 95% CI: 0.01, 0.03; p < 0.001), lymphocytes (coef.: - 0.02; 95% CI: - 0.03, - 0.02; p < 0.001) and monocyte (coef.: 0.06; 95% CI: 0.01, 0.11; p = 0.021); KYN concentration was negatively associated with basophil (coef.: - 0.62; 95% CI: - 1.23, - 0.01; p = 0.048) after adjusting for age. In addition, total stool output (gm) increased (coef.: 793.84; 95% CI: 187.16, 1400.52; p = 0.011) and also increased duration of hospital stay (hour) (coef.: 22.89; 95% CI: 10.24, 35.54; p = 0.001) with increasing CIT concentration. The morphological changes associated with EED may increase the risk of enteric infection and diarrheal disease among children. Further research is critically needed to better understand the complex mechanisms by which EED biomarkers may impact susceptibility to dehydrating diarrhea in children.
Collapse
|
6
|
González-Fernández D, Cousens S, Rizvi A, Chauhadry I, Soofi SB, Bhutta ZA. Infections and nutrient deficiencies during infancy predict impaired growth at 5 years: Findings from the MAL-ED study in Pakistan. Front Nutr 2023; 10:1104654. [PMID: 36875830 PMCID: PMC9982131 DOI: 10.3389/fnut.2023.1104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023] Open
Abstract
Background Socio-economic, nutritional, and infectious factors have been associated with impaired infant growth, but how the presence of these factors during infancy affects growth around 5 years is not well understood. Methods This secondary analysis of the MAL-ED cohort included 277 children from Pakistan for whom socio-demographic, breastfeeding, complementary foods, illness, nutritional biomarkers, stool pathogens and environmental enteropathy indicators between 0 and 11 months were recorded. We used linear regression models to analyze associations of these indicators with height-for-age (HAZ), weight-for-age (WAZ) and weight-for-height (WLZ) at 54-66 months (~5 years), and Poisson regression with robust standard errors to estimate risk ratios for stunting and underweight ~5 years, controlling for gender, first available weight, and income. Results Among the 237 infants followed longitudinally and evaluated at about 5 years of age, exclusive breastfeeding was short (median = 14 days). Complementary feeding started before 6 months with rice, bread, noodles, or sugary foods. Roots, dairy products, fruits/vegetables, and animal-source foods were provided later than recommended (9-12 months). Anemia (70.9%), deficiencies in iron (22.0%), zinc (80.0%), vitamin A (53.4%) and iodine (13.3%) were common. Most infants (>90%) presented with diarrhea and respiratory infections in their first year. At ~5 years, low WAZ (mean-1.91 ± 0.06) and LAZ (-2.11 ± 0.06) resulted in high prevalence of stunting (55.5%) and underweight (44.4%) but a relatively low rate of wasting (5.5%). While 3.4% had concurrent stunting and wasting ~5 years, 37.8% of children had coexisting stunting and underweight. A higher income and receiving formula or dairy products during infancy were associated with a higher LAZ ~5 years, but infant's history of hospitalizations and more respiratory infections were associated with lower LAZ and higher risk of stunting ~5 years. Infants' intake of commercial baby foods and higher serum-transferrin receptors were associated with higher WAZ and lower risk of underweight ~5 years. Presence of Campylobacter and fecal neopterin >6.8 nmol/L in the first year were associated with increased risk of underweight ~5 years. Conclusion Growth indicators ~5 years were associated with poverty, inappropriate complementary feeding, and infections during the first year of life, which supports the early start of public health interventions for preventing growth delay ~5 years.
Collapse
Affiliation(s)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Imran Chauhadry
- Center of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sajid Bashir Soofi
- Center of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Zulfiqar Ahmed Bhutta
- SickKids Centre for Global Child Health, Toronto, ON, Canada.,Center of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan.,Institute for Global Health and Development, The Aga Khan University, London, United Kingdom
| |
Collapse
|
7
|
Serum cobalamin in children with moderate acute malnutrition in Burkina Faso: Secondary analysis of a randomized trial. PLoS Med 2022; 19:e1003943. [PMID: 35263343 PMCID: PMC8906584 DOI: 10.1371/journal.pmed.1003943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among children with moderate acute malnutrition (MAM) the level of serum cobalamin (SC) and effect of food supplements are unknown. We aimed to assess prevalence and correlates of low SC in children with MAM, associations with hemoglobin and development, and effects of food supplements on SC. METHODS AND FINDINGS A randomized 2 × 2 × 3 factorial trial was conducted in Burkina Faso. Children aged 6 to 23 months with MAM received 500 kcal/d as lipid-based nutrient supplement (LNS) or corn-soy blend (CSB), containing dehulled soy (DS) or soy isolate (SI) and 0%, 20%, or 50% of total protein from milk for 3 months. Randomization resulted in baseline equivalence between intervention groups. Data on hemoglobin and development were available at baseline. SC was available at baseline and after 3 and 6 months. SC was available from 1,192 (74.1%) of 1,609 children at baseline. The mean (±SD) age was 12.6 (±5.0) months, and 54% were females. Low mid-upper arm circumference (MUAC; <125 mm) was found in 80.4% (958) of the children and low weight-for-length z-score (WLZ; <-2) in 70.6% (841). Stunting was seen in 38.2% (456). Only 5.9% were not breastfed. Median (IQR) SC was 188 (137; 259) pmol/L. Two-thirds had SC ≤222 pmol/L, which was associated with lower hemoglobin. After age and sex adjustments, very low SC (<112 pmol/L) was associated with 0.21 (95% CI: 0.01; 0.41, p = 0.04) and 0.24 (95% CI: 0.06; 0.42, p = 0.01) z-score lower fine and gross motor development, respectively. SC data were available from 1,330 (85.9%) of 1,548 children followed up after 3 months and 398 (26.5%) of the 1,503 children after 6 months. Based on tobit regression, accounting for left censored data, and adjustments for correlates of missing data, the mean (95% CI) increments in SC from baseline to the 3- and 6-month follow-up were 72 (65; 79, p < 0.001) and 26 (16; 37, p < 0.001) pmol/L, respectively. The changes were similar among the 310 children with SC data at all 3 time points. Yet, the increase was 39 (20; 57, p < 0.001) pmol/L larger in children given LNS compared to CSB if based on SI (interaction, p < 0.001). No effect of milk was found. Four children died, and no child developed an allergic reaction to supplements. The main limitation of this study was that only SC was available as a marker of status and was missing from a quarter of the children. CONCLUSIONS Low SC is prevalent among children with MAM and may contribute to impaired erythropoiesis and child development. The SC increase during supplementation was inadequate. The bioavailability and adequacy of cobalamin in food supplements should be reconsidered. TRIAL REGISTRATION ISRCTN Registry ISRCTN42569496.
Collapse
|
8
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
9
|
Kamugisha JGK, Lanyero B, Nabukeera-Barungi N, Ritz C, Mølgaard C, Michaelsen KF, Briend A, Mupere E, Friis H, Grenov B. Weight-for-Height Z-score Gain during Inpatient Treatment and Subsequent Linear Growth during Outpatient Treatment of Young Children with Severe Acute Malnutrition: A Prospective Study from Uganda. Curr Dev Nutr 2021; 5:nzab118. [PMID: 34712895 PMCID: PMC8546154 DOI: 10.1093/cdn/nzab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Linear catch-up growth after treatment of severe acute malnutrition (SAM) is low, and little is known about the association between ponderal and subsequent linear growth. OBJECTIVE The study assessed the association of weight-for-height z-score (WHZ) gain with subsequent linear growth during SAM treatment and examined its modifiers. METHODS This was a prospective study, nested in a trial (ISRCTN16454889), among 6-59-mo-old children treated for SAM in Uganda. Weight, total length (TL), and knee-heel length (KHL) were measured at admission, weekly during inpatient therapeutic care (ITC), at discharge, and fortnightly during outpatient therapeutic care (OTC) for 8 wk. Linear regression was used to assess the association between WHZ gain during ITC and linear growth during OTC. RESULTS Of 400 children, 327 were discharged to OTC and 290 were followed up for 8 wk. Mean WHZ gains were 0.45 in ITC and 1.24 in OTC, whereas mean height-for-age z-score (HAZ) declined by 0.41 during ITC and increased by 0.14 during OTC. WHZ gain during ITC was positively associated with HAZ, TL, and KHL gains during OTC [regression coefficients (β) (95% CI): 0.12 (0.09, 0.15) z-score; 3.1 (2.4, 3.8) mm and 0.5 (0.1, 0.7) mm, respectively]. The regression coefficients were highest for the middle tertile of WHZ gain with respect to HAZ and TL. Admission diarrhea and low plasma citrulline reduced the association between WHZ gain during ITC and HAZ and TL gain during OTC (P < 0.001). In contrast, pneumonia (P = 0.051) and elevated plasma C-reactive protein (P < 0.001) increased the association with TL gain, but reduced the association with KHL gain (P < 0.001). CONCLUSIONS Among children admitted with SAM, considerable WHZ gain during ITC was followed by very modest linear catch-up growth during OTC, with no indication of a WHZ gain threshold, above which linear growth was higher. To optimize linear growth in these children, early treatment of infections and conditions affecting the gut may be necessary.
Collapse
Affiliation(s)
- Jolly G K Kamugisha
- Mwanamugimu Nutrition Unit, Department of Pediatrics, Mulago National Referral Hospital, Kampala, Uganda
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Betty Lanyero
- World Health Organization, Ethiopia Country Office, UNECA Compound, Addis Ababa, Ethiopia
| | | | - Christian Ritz
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - André Briend
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ezekiel Mupere
- Department of Pediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henrik Friis
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Benedikte Grenov
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
10
|
Citrulline, Biomarker of Enterocyte Functional Mass and Dietary Supplement. Metabolism, Transport, and Current Evidence for Clinical Use. Nutrients 2021; 13:nu13082794. [PMID: 34444954 PMCID: PMC8398474 DOI: 10.3390/nu13082794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
L-Citrulline is a non-essential but still important amino acid that is released from enterocytes. Because plasma levels are reduced in case of impaired intestinal function, it has become a biomarker to monitor intestinal integrity. Moreover, oxidative stress induces protein citrullination, and antibodies against anti-citrullinated proteins are useful to monitor rheumatoid diseases. Citrullinated histones, however, may even predict a worse outcome in cancer patients. Supplementation of citrulline is better tolerated compared to arginine and might be useful to slightly improve muscle strength or protein balance. The following article shall provide an overview of L-citrulline properties and functions, as well as the current evidence for its use as a biomarker or as a therapeutic supplement.
Collapse
|