1
|
Liu X, Zhong J. Liver and Kidney Tumor Masses as the Initial Presentation of B-Cell Acute Lymphoblastic Leukemia. Clin Nucl Med 2024; 49:e612-e614. [PMID: 39235153 DOI: 10.1097/rlu.0000000000005428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
ABSTRACT We described a 13-year-old girl who presented unexplained paroxysmal sharp pain in the right upper abdomen for 3 days. CT and MRI showed multiple masses in the liver and kidneys, initially diagnosed as lymphoma. The hepatic mass biopsy confirmed B-cell lymphoblastic lymphoma. FDG PET/CT examination found that the liver and kidney masses demonstrated high metabolic activity, with concomitant increased metabolic activity in the skeleton. Bone marrow biopsy revealed extensive skeletal involvement. The final diagnosis was B-cell acute lymphoblastic leukemia. This case highlights the effectiveness of FDG PET/CT as an adjunct imaging modality for diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- From the Ganzhou Institute of Medical Imaging, Ganzhou Key Laboratory of Medical Imaging and Artificial Intelligence, Medical Imaging Center, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | | |
Collapse
|
2
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong S, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex vivo generated 89 Zr-oxine labeled plasma cells by PET in a non-human primate model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595782. [PMID: 38903108 PMCID: PMC11188104 DOI: 10.1101/2024.05.24.595782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
|
3
|
Yang F, Cui X, Wang H, Zhang D, Luo S, Li Y, Dai Y, Yang D, Zhang X, Wang L, Zheng G, Zhang X. Iron overload promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of FOS. Cancer Lett 2024; 583:216652. [PMID: 38242196 DOI: 10.1016/j.canlet.2024.216652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.
Collapse
Affiliation(s)
- Feifei Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shulin Luo
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dan Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuqun Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xuezhong Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|