1
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
2
|
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, Krepischi ACV. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways. Biochem Genet 2024:10.1007/s10528-024-10764-y. [PMID: 38649558 DOI: 10.1007/s10528-024-10764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Edson Mario de Andrade Silva
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | - Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Taiany Curdulino Macedo
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Wu Z, Chen S, Zuo T, Fu J, Gong J, Liu D, Wang B. miR-139-3p/Wnt5A Axis Inhibits Metastasis in Hepatoblastoma. Mol Biotechnol 2023; 65:2030-2037. [PMID: 36917402 DOI: 10.1007/s12033-023-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
In order to examine new potential treatment options for the treatment of hepatoblastoma (HB), we identified the differential expression of five-candidate tumor suppressor miRNAs in HB and explored possible regulatory mechanisms of target miRNA molecule. By using real-time quantitative polymerase chain reaction (qPCR), we examined the expression of miRNAs in HB tissues and cells. The effect of has-miR-139-3p mimics on the invasion and migration ability was assessed by transwell assay and scratch-wound assay in HepG2 cells. Subsequently, we analyzed the target genes of miR-139-3p and their enrichment signaling pathways through bioinformatics. qPCR, Western-blot and dual-luciferase assays were further used to assess whether has-miR-139-3p targets Wnt5A. The results showed that hsa-miR-139-3p was significantly decreased in HB cells. Upregulation of hsa-miR-139-3p inhibited the invasive and migratory ability of HepG2. Bioinformatics analysis showed that hsa-miR-139-3p may target Wnt5A to regulate the WNT pathway, which was further confirmed by Western-blot and dual-luciferase assays. Overexpression of Wnt5A can reverse the miR-139-3p mimic-induced declines in the expression of WNT pathway-related proteins and restore the invasion and migration of HepG2. These data indicated that the hsa-miR-139-3p/Wnt5A axis inhibited HB metastasis, suggesting that miR-139-3p and Wnt5A may be potential targets for the treatment of HB.
Collapse
Affiliation(s)
- Zhouguang Wu
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Siqi Chen
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Taoyan Zuo
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Jingru Fu
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Jiafeng Gong
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Dong Liu
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
4
|
Zhu LR, Zheng W, Gao Q, Chen T, Pan ZB, Cui W, Cai M, Fang H. Epigenetics and genetics of hepatoblastoma: Linkage and treatment. Front Genet 2022; 13:1070971. [PMID: 36531231 PMCID: PMC9748487 DOI: 10.3389/fgene.2022.1070971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Hepatoblastoma is a malignant embryonal tumor with multiple differentiation modes and is the clearest liver malignancy in children. However, little is known about genetic and epigenetic events in Hepatoblastoma. Increased research has recently demonstrated, unique genetic and epigenetic events in Hepatoblastoma, providing insights into its origin and precise treatment. Some genetic disorders and congenital factors are associated with the risk of Hepatoblastoma development, such as the Beckwith-Wiedemann syndrome, Familial Adenomatous polyposis, and Hemihypertrophy. Epigenetic modifications such as DNA modifications, histone modifications, and non-coding RNA regulation are also essential in the development of Hepatoblastoma. Herein, we reviewed genetic and epigenetic events in Hepatoblastoma, focusing on the relationship between these events and cancer susceptibility, tumor growth, and prognosis. By deciphering the genetic and epigenetic associations in Hepatoblastoma, tumor pathogenesis can be clarified, and guide the development of new anti-cancer drugs and prevention strategies.
Collapse
Affiliation(s)
- Li-ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Wanqun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qun Gao
- Department of Pediatric Oncology Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Tianping Chen
- Department of Hematology and Oncology, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhu-bin Pan
- Department of General Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital, Anhui Institute of Pediatric Research, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
5
|
Wu B, Zhen K, Guo L, Sun C. Diagnostic and Prognostic Value of miRNAs in Hepatoblastoma: A Systematic Review With Meta-Analysis. Technol Cancer Res Treat 2022; 21:15330338221087830. [PMID: 35532186 PMCID: PMC9092586 DOI: 10.1177/15330338221087830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aim: Increasing evidence has revealed the valuable diagnostic and prognostic applications of dysregulated microRNAs (miRNAs) in hepatoblastoma (HB), the most common hepatic malignancy during childhood. However, these results are inconsistent and remain to be elucidated. In the present study, we aimed to systematically compile up-to-date information regarding the clinical value of miRNAs in HB. Methods: Articles concerning the diagnostic and prognostic value of single miRNAs for HB were searched from databases. The sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), area under the curve (AUC), and hazard ratios (HRs) were separately pooled to explore the diagnostic and prognostic performance of miRNA. Subgroup and meta-regression analyses were further carried out only in the event of heterogeneity. Results: In all, 20 studies, involving 264 HB patients and 206 healthy individuals, met the inclusion criteria in the 6 included literature articles. For the diagnostic analysis of miRNAs in HB, the pooled SEN and SPE were 0.76 (95% CI: 0.72-0.80) and 0.75 (95% CI: 0.70-0.80), respectively. Moreover, the pooled PLR was 2.79 (95% CI: 2.12-3.66), NLR was 0.34 (95% CI: 0.26-0.45), DOR was 10.24 (95% CI: 6.55-16.00), and AUC was 0.83, indicating that miRNAs had moderate diagnostic value in HB. For the prognostic analysis of miRNAs in HB, the abnormal expressions of miR-21, miR-34a, miR-34b, miR-34c, miR-492, miR-193, miR-222, and miR-224 in patients were confirmed to be associated with a worse prognosis. The pooled HR was 1.74 (95% CI: 1.20-2.29) for overall survival and 1.74 (95% CI: 1.31-2.18) for event-free survival, suggesting its potential as a prognostic indicator for HB. Conclusion: To the best of our knowledge, this is the first comprehensive systematic review and meta-analysis that examines the diagnostic and prognostic role of dysregulated miRNAs in HB patients. The combined meta-analysis results supported the previous individual finds that miRNAs might provide a new, noninvasive method for the diagnostic and prognostic analyses of HB.
Collapse
Affiliation(s)
- Bin Wu
- 71532Children's Hospital of Soochow University, Suzhou, China
| | - Kaikai Zhen
- 71532Children's Hospital of Soochow University, Suzhou, China
| | - Lixia Guo
- 71532Children's Hospital of Soochow University, Suzhou, China
| | - Chao Sun
- 71532Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Liao Y, Qiu Z, Bai L. miR‑302d‑3p regulates the viability, migration and apoptosis of breast cancer cells through regulating the TMBIM6‑mediated ERK signaling pathway. Mol Med Rep 2021; 24:853. [PMID: 34651659 PMCID: PMC8548939 DOI: 10.3892/mmr.2021.12493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRs/miRNAs) play important roles in the occurrence, metastasis and prognosis of multiple types of cancers. However, the specific role of miR-302d-3p and its underlying mechanism in breast cancer (BC) have not yet been reported. The present study aimed to identify the role of miR-302D-3p in BC and its potential mechanism using BC cell lines MCF7 and MDA-MB-231 and normal breast epithelial cell MCF-10A. Cancer and paracancerous tissue from patients with BC were also used. Reverse transcription-quantitative PCR was performed to detect the expression of miR-302d-3p and transmembrane Bax inhibitor motif containing 6 (TMBIM6). Dual-luciferase reporter assays verified the binding sites of miR-302d-3p and TMBIM6. Immunohistochemistry was used to measure the expression of TMBIM6. Cell transfection techniques were used to overexpress or interfere with miR-302d-3p and TMBIM6. A Cell Counting Kit-8 assay was performed to detect cell viability, and migration was measured using a wound healing assay. Apoptosis was detected by flow cytometry. The expression levels of apoptosis-related proteins and pathway-related proteins were detected by western blotting. The expression of miR-302d-3p in BC cell lines was found to be downregulated. It was also demonstrated that miR-302d-3p could inhibit cell viability and migration and promote apoptosis. The expression of TMBIM6 in BC cell lines and tissues was upregulated. Upregulated miR-302d-3p was shown to inhibit viability and migration, and promote apoptosis by targeting TMBIM6, during which extracellular signal-regulated kinase (ERK) and its phosphorylation were inhibited in the ERK signaling pathway in cells. Overall, the present study demonstrated that miR-302d-3p could regulate the viability, migration and apoptosis of BC cells through regulating TMBIM6-mediated ERK signaling pathway.
Collapse
Affiliation(s)
- Yanru Liao
- Department of Thyroid and Breast Surgery, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Zhenxiong Qiu
- Department of General Surgery, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Bai
- Department of Pathology and Central Laboratory, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| |
Collapse
|
7
|
Chen LJ, Yuan MX, Ji CY, Zhang YB, Peng YM, Zhang T, Gao HQ, Sheng XY, Liu ZY, Xie WX, Yin Q. Long Non-Coding RNA CRNDE Regulates Angiogenesis in Hepatoblastoma by Targeting the MiR-203/VEGFA Axis. Pathobiology 2020; 87:161-170. [PMID: 32182608 DOI: 10.1159/000505131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE MiR-203 has been shown to participate in multiple malignancies, but the role of miR-203 in hepatoblastoma (HB) remains unclear. The aim of our study was to investigate the effects of miR-203 in HB. METHODS A total of 15 pairs of HB tissues and para-tumour normal tissues were collected for the experiments. RT-qPCR and Western blotting were performed to detect the expression of CRNDE, miR-203, and VEGFA at the mRNA and/or protein levels, respectively. A dual luciferase assay verified the target relationship between miR-203 and the 3'UTR of VEGFA as well as miR-203 and CRNDE. In addition, MTT, wound healing, and tube formation assays were performed to assess the effects of miR-203, VEGFA, and CRNDE on cell proliferation, migration, and angiogenesis, respectively. RESULTS Our data revealed that miR-203 expression was decreased in HB tissues, while long non-coding RNA (lncRNA) CRNDE expression was increased. The dysregulation of miR-203 and CRNDE was closely related to tumour size and stage. Moreover, overexpression of miR-203 inhibited angiogenesis. A dual luciferase assay verified that VEGFA is a direct target of miR-203 and that CRNDE binds to miR-203. Furthermore, our results showed that miR-203 suppressed cell viability, migration, and angiogenesis by regulating VEGFA expression. Additionally, it was confirmed that CRNDE promoted angiogenesis by negatively regulating miR-203 expression. CONCLUSION lncRNA CRNDE targets the miR-203/VEGFA axis and promotes angiogenesis in HB. These results provide insight into the underlying mechanisms of HB and indicate that CRNDE and miR-203 might be potential targets for HB therapy.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Miao-Xian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Chun-Yi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Yan-Bing Zhang
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Yu-Ming Peng
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Tian Zhang
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Hong-Qiang Gao
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Xin-Yi Sheng
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Zhao-Yang Liu
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Wei-Xin Xie
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, China,
| |
Collapse
|
8
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
9
|
A Comprehensive Exploration of the lncRNA CCAT2: A Pan-Cancer Analysis Based on 33 Cancer Types and 13285 Cases. DISEASE MARKERS 2020; 2020:5354702. [PMID: 32908615 PMCID: PMC7060419 DOI: 10.1155/2020/5354702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Whether the lncRNA CCAT2 expression level affects the clinical progression and outcome of cancer patients has not yet been fully elucidated. There is still an inconsistent view regarding the correlation between CCAT2 expression and clinicopathological factors, including survival data. Besides, the regulation mechanism of CCAT2 in human cancer is still unclear. Our study analyzed a large number of publication data and TCGA databases to identify the association of CCAT2 expression with clinicopathological factors and to explore the regulatory mechanisms in human cancers. We designed a comprehensive study to determine the expression of CCAT2 in human cancer by designing a meta-analysis of 20 selected studies and the TCGA database, using StataSE 12.0 to explore the relationship between CCAT2 expression and both the prognosis and clinicopathological features of 33 cancer types and 13285 tumor patients. Moreover, we performed GO and KEGG pathway enrichment analyses on potential target genes of CCAT2 collected from GEPIA and LncRNA2Target V2.0. The level of CCAT2 expression in tumor tissues is higher than that in paired normal tissues and is significantly associated with a poor prognosis in cancer patients. Besides, overexpression of CCAT2 was significantly associated with tumor size, clinical stage, and TNM classification. Meanwhile, CCAT2 expression is the highest in stage II of human cancer, followed by stage III. Finally, 111 validated target gene symbols were identified, and GO and KEGG demonstrated that the CCAT2 validation target was significantly enriched in several pathways, including microRNAs in the cancer pathway. In summary, CCAT2 can be a potential biomarker associated with the progression and prognosis of human cancer.
Collapse
|
10
|
Cui X, Wang Z, Li J, Zhu J, Ren Z, Zhang D, Zhao W, Fan Y, Zhang D, Sun R. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway. Cell Prolif 2020; 53:e12768. [PMID: 31967701 PMCID: PMC7106953 DOI: 10.1111/cpr.12768] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives N6‐methyladenosine (m6A) is a ubiquitous epigenetic RNA modification that plays a pivotal role in tumour development and metastasis. In this study, we aimed to investigate the expression profiling, clinical significance, biological function and the regulation of m6A‐related genes in hepatoblastoma (HB). Materials and Methods The mRNA and protein expression levels of m6A‐related genes were analysed using Gene Expression Omnibus (GEO) and tissue microarray (TMA) cohort. Kaplan‐Meier analysis was performed to evaluate the prognostic value of m6A‐related genes in HB. Knockdown of m6A‐related genes was conducted to analyse its function on cell proliferation, migration and invasion. Furthermore, bioinformatics analysis and experimental verification were used to explore the potential molecular mechanism and signalling pathway. Results We found that most m6A‐related genes were significantly upregulated in HB tumour tissues. High levels of methyltransferase‐like 3 (METTL3, P = .013), YTHDF2 (P = .037) and FTO (P = .032) indicated poor clinical outcomes, and the upregulation of METTL3 was an independent prognostic factor in HB patients. Functional assays showed that knockdown of METTL3 could dramatically suppress the proliferation, migration and invasion of HB cells. In addition, METTL3 was identified to be a direct target of microRNA‐186 (miR‐186). Consistently, miR‐186 was low expressed in HB tumour tissues. Moreover, overexpression of miR‐186 significantly inhibited cell aggressive phenotype both in vitro and in vivo, while the inhibitory effect could be reversed by METTL3 overexpression. Mechanism study indicated that miR‐186/METTL3 axis contributed to the progression of HB via the Wnt/β‐catenin signalling pathway. Conclusions M6A‐related genes were frequently dysregulated in HB. miR‐186/METTL3/Wnt/β‐catenin axis might serve as novel therapeutic targets and prognostic biomarkers in HB.
Collapse
Affiliation(s)
- Xichun Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifang Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianming Zhu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Pathology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhao
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingzhong Fan
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da Zhang
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Cui X, Wang Z, Liu L, Liu X, Zhang D, Li J, Zhu J, Pan J, Zhang D, Cui G. The Long Non-coding RNA ZFAS1 Sponges miR-193a-3p to Modulate Hepatoblastoma Growth by Targeting RALY via HGF/c-Met Pathway. Front Cell Dev Biol 2019; 7:271. [PMID: 31781561 PMCID: PMC6856658 DOI: 10.3389/fcell.2019.00271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatoblastoma (HB) is the most common and aggressive malignant hepatic neoplasm in childhood and the therapeutic outcomes remain undesirable due to its recurrence and metastasis. Recently, long non-coding RNA (lncRNA) zinc finger antisense 1 (ZFAS1) has been reported to be an oncogenic gene in multiple cancers. However, the expression status and specific role of ZFAS1 involved in cancer progression of human HB remain unknown. This study aimed to identify the role of ZFAS1/miR-193a-3p/RALY axis in the development of HB. Here we showed that the expression of ZFAS1 was significantly upregulated in both HB tissues and cell lines. High ZFAS1 expression was significantly associated with aggressive tumor phenotypes and poorer overall survival in HB. In vitro and in vivo function assays indicated that silencing of ZFAS1 significantly suppressed HB cell proliferation and invasion. Furthermore, miR-193a-3p was identified to be the target of ZFAS1. Subsequently, RALY was confirmed to be regulated by miR-193a-3p/ZFAS1 axis. Mechanistically, our results indicated that the ZFAS1 participated to the progression of HB via regulating the HGF/c-Met signaling. Collectively, these data demonstrated that ZFAS1 acted as an oncogene to promote initiation and progression of HB by regulating miR-193a-3p/RALY (RALY Heterogeneous Nuclear Ribonucleoprotein) axis via HGF/c-Met Pathway, which provides an efficient marker and new therapeutic target for HB.
Collapse
Affiliation(s)
- Xichun Cui
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianming Zhu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juntao Pan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Cui X, Liu X, Han Q, Zhu J, Li J, Ren Z, Liu L, Luo Y, Wang Z, Zhang D, Fan Y, Zhang D, Dong G. DPEP1 is a direct target of miR-193a-5p and promotes hepatoblastoma progression by PI3K/Akt/mTOR pathway. Cell Death Dis 2019; 10:701. [PMID: 31541079 PMCID: PMC6754441 DOI: 10.1038/s41419-019-1943-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
Abstract
Hepatoblastoma (HB) is the most common hepatic neoplasm in childhood and the therapeutic outcomes remain undesirable due to its recurrence and metastasis. Increasing evidence shows that dipeptidase 1 (DPEP1) has pivotal function in tumorigenesis in multiple tumors. However, the expression pattern, biological function, and underlying mechanism of DPEP1 in HB have not been reported. Here we showed that DPEP1 was significantly upregulated and was associated with poor prognosis in HB patients. In vitro and in vivo assays indicated that silencing DPEP1 significantly suppressed HB cell proliferation, migration, and invasion, while DPEP1 overexpression exhibited the opposite effect. In addition, we identified that DPEP1 was a direct target of microRNA-193a-5p (miR-193a-5p). Functional experiments demonstrated that overexpression of miR-193a-5p significantly inhibited cell proliferation and invasion of HB cells, while the inhibitory effect could be reversed by DPEP1 overexpression. Moreover, miR-193a-5p was decreased in HB tumor tissues and associated with a poor clinical prognosis. Mechanistically, our results indicated that the miR-193a-5p/DPEP1 axis participated to the progression of HB via regulating the PI3K/Akt/mTOR (phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin) signaling. In conclusion, our findings suggest that the miR-193a-5p /DPEP1 axis might be a good prognostic predictor and therapeutic target in HB.
Collapse
Affiliation(s)
- Xichun Cui
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qicai Han
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Jianming Zhu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanbing Luo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhifang Wang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yingzhong Fan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Gang Dong
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
13
|
The Role of MicroRNAs in Hepatoblastoma Tumors. Cancers (Basel) 2019; 11:cancers11030409. [PMID: 30909459 PMCID: PMC6468899 DOI: 10.3390/cancers11030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common hepatic malignancy during childhood. However, little is still known about the molecular mechanisms that govern the development of this disease. This review is focused on the recent advances regarding the study of microRNAs in hepatoblastoma and their substantial contribution to improv our knowledge of the pathogenesis of this disease. We show here that miRNAs represent valuable tools to identify signaling pathways involved in hepatoblastoma progression as well as useful biomarkers and novel molecular targets to develop alternative therapeutic strategies in this disease.
Collapse
|
14
|
Zhen N, Gu S, Ma J, Zhu J, Yin M, Xu M, Wang J, Huang N, Cui Z, Bian Z, Sun F, Pan Q. CircHMGCS1 Promotes Hepatoblastoma Cell Proliferation by Regulating the IGF Signaling Pathway and Glutaminolysis. Theranostics 2019; 9:900-919. [PMID: 30809316 PMCID: PMC6376477 DOI: 10.7150/thno.29515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/29/2018] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recently shown to participate in cellular development and several pathophysiological processes. The identification of dysregulated circRNAs and their function in cancer have attracted considerable attention. Nevertheless, the expression profile and role of circRNAs in human hepatoblastoma (HB) remain to be studied. In this report, we analyzed the expression prolife of circRNAs in HB tissues and identified circHMGCS1 (3-hydroxy-3-methylglutaryl-CoA synthase 1; hsa_circ_0072391) as a remarkably upregulated circRNA. Methods: The expression prolife of circRNAs in HB tissues were investigated through circRNA sequencing analyses. ISH and qRT-PCR assays were performed to measure the expression level of circHMGCS1. The effect of knocking down circHMGCS1 in HB cells in vitro and in vivo were evaluated by colony formation assay, flow cytometry, xenograft tumors assay and untargeted metabolomics assay. MRE analysis and dual luciferase assay were performed to explore the underlying molecular mechanisms. Results: HB patients with high circHMGCS1 expression have shorted overall survival. Knockdown of circHMGCS1 inhibits HB cells proliferation and induces apoptosis. CircHMGCS1 regulates IGF2 and IGF1R expression via sponging miR-503-5p, and affects the downstream PI3K-Akt signaling pathway to regulate HB cell proliferation and glutaminolysis. Conclusions: The circHMGCS1/miR-503-5p/IGF-PI3K-Akt axis regulates the proliferation, apoptosis and glutaminolysis of HB cells, implying that circHMGCS1 is a promising therapeutic target and prognostic marker for HB patients.
Collapse
Affiliation(s)
- Ni Zhen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ji Ma
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jiabei Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jing Wang
- Department of Surgery, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhixuan Bian
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|