1
|
Zhang X, Fan Y, Shen Z, Chen Z, You W. Identifying immune-related prognostic biomarkers in osteosarcoma: Development and validation of the tumor immune microenvironment risk model based on analysis of TCGA. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38462917 DOI: 10.1002/tox.24208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Osteosarcoma is a rare and aggressive malignancy with limited effective therapeutic options. This study aimed to identify immune-related prognostic biomarkers and develop a prognostic model for osteosarcoma. METHODS We performed integrated analysis of transcriptomic data and immune cell infiltration profiles of 84 osteosarcoma samples from the Cancer Genome Atlas (TCGA) database. Time-dependent receiver operating characteristic (ROC) curve analysis was used to assess the prognostic value of the TIMErisk model. We also performed functional annotation and pathway enrichment analyses to explore the potential mechanisms underlying the TIMErisk model. RESULTS We identified a seven-gene TIMErisk model (C2, APBB1IP, BST2, TRPV2, CCL5, GBP1, and F13A1) that was independently associated with overall survival of osteosarcoma patients. The TIMErisk model showed significant associations with immune cell infiltration and immunosuppressive gene expression. In addition, the TIMErisk model was associated with drug sensitivity, and we found that several immune checkpoint genes were significantly differentially expressed between high- and low-TIMErisk groups. Functional annotation and pathway enrichment analyses revealed that the TIMErisk model was associated with multiple immune-related pathways, including antigen processing and presentation, cytokine-cytokine receptor interaction, and T cell receptor signaling pathway. CONCLUSION Our study identified a novel TIME-based prognostic model for osteosarcoma that incorporates immune-related genes and can be used to predict patient prognosis and response to immunotherapy. Our findings highlight the importance of the TIME microenvironment in osteosarcoma progression and suggest that immune-related biomarkers may have clinical significance in the management of osteosarcoma.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yizhe Fan
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongyuan Shen
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyu Chen
- Department of Traumatology & Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| | - Wulin You
- Department of Traumatology & Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
2
|
Rahmadiani N, Norahmawati E, Endharti AT, Hambalie AO, Isma SPP. PD-L1, STAT3, IL6, and EGFR Immunoexpressions in High-Grade Osteosarcoma. Adv Orthop 2024; 2024:9036225. [PMID: 38434518 PMCID: PMC10907101 DOI: 10.1155/2024/9036225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Immunotherapy has been widely used in the treatment of various malignancies with satisfactory results. One of the agents for immunotherapy is an inhibitor of programmed cell death-1 and its ligands (PD-1 and PD-L1). However, attempts at utilizing PD-1/PD-L1 immunotherapy in osteosarcoma have not yielded favorable results. This may be due to differences in PD-L1 regulation and the immune landscape in osteosarcoma, as the mechanism is still poorly understood. Therefore, elucidating PD-L1 regulation in osteosarcoma is paramount in order to improve treatment results using immunotherapy. Methods This is a cross-sectional study conducted in the Department of Anatomical Pathology of Saiful Anwar Hospital using 33 paraffin blocks of confirmed cases of osteosarcoma. Immunohistochemical staining using PD-L1, STAT3, IL6, and EGFR was performed. Statistical analyses were subsequently performed on the immunoexpression data of these antibodies. Results PD-L1, STAT3, IL6, and EGFR expressions were found in 6 (18.2%), 6 (18.2%), 28 (84.8%), and 30 (90.9%) cases, respectively. There were significant correlations between PD-L1 and STAT3 (r = 0.620, p=<0.001), PD-L1 and EGFR (r = 0.449, p=0.009), as well as STAT3 and EGFR (r = 0.351, p=0.045). Conclusion The existence of a correlation between PD-L1, STAT3, and EGFR indicates the potential role of STAT3 and EGFR in PD-L1 regulation in osteosarcoma, which may become the basis for targeted therapy.
Collapse
Affiliation(s)
- Nayla Rahmadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Eviana Norahmawati
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Biomedical Sciences, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | - Ailen Oktaviana Hambalie
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Satria Pandu Persada Isma
- Department of Orthopaedics and Traumatology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| |
Collapse
|
3
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
4
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
5
|
Xie L, Chen C, Liang X, Xu J, Sun X, Sun K, Yang R, Tang X, Guo W. Expression and Clinical Significance of Various Checkpoint Molecules in Advanced Osteosarcoma: Possibilities for Novel Immunotherapy. Orthop Surg 2022; 15:829-838. [PMID: 36519392 PMCID: PMC9977595 DOI: 10.1111/os.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES The fact that studies on anti-programmed cell death 1 (PD-1) or its relevant ligand 1 (PD-L1) have yielded such few responses greatly decreases the confidence in immunotherapy with checkpoint inhibitors for advanced osteosarcoma. We intended to characterize the expression of various checkpoint molecules with immunohistochemistry in osteosarcoma specimens and analyzed the relationship of the expression of these checkpoint molecules with patients' clinical courses. METHODS This study was a retrospective non-intervention study from August 1st 2017 to March 1st 2020. Immunohistochemistry for B7-H3 (CD276, Cluster of Differentiation 276), CD47 (Cluster of Differentiation 47), PD-L1 (programmed cell death ligand 1), TIM3 (mucin-domain containing-3), TGF-β (TransformingGrowth Factor β), CXCR 4 (Chemokine Receptor 4), CD27 (Cluster of Differentiation 27), IDO1 (Indoleamine 2,3-dioxygenase 1), KIRs (Killer cell Immunoglobulin-like Receptors), and SDF-1 (Stromal cell-Derived Factor-1) was performed on 35 resected osteosarcoma specimens. Patients progressed upon first-line chemotherapy with evaluable lesions were qualified for this study, and their specimens previously stored in the pathological department repository would be retrieved for analysis. Associations between the immunohischemistry markers and clinicopathological variables and survival were evaluated by the χ2 displayed by cross-table, Cox proportional hazards regression model, and Kaplan-Meier plots. RESULTS The positive rates of B7-H3, CD47, PD-L1, TIM3, and TGF-β expression in this sample of 35 heavily treated osteosarcomas were 29% (10/35), 15% (5/35), 9% (3/35), 6% (2/35), and 6% (2/35), respectively, and diverse staining intensities were observed. Among these advanced patients, 15/35 (43%) had positive checkpoint expression, of which 33% (5/15) showed evidence of the co-expression of more than one checkpoint molecule. We did not find any obvious correlation with clinicopathological characteristics and the positive expression of these molecules. CONCLUSIONS The present study highlights that only a small subset of progressive osteosarcomas, which had been heavily-treated, expressed tumor immune-associated checkpoint molecules, of which B7-H3 was the most positively expressed checkpoint and might be a promising target for further osteosarcoma investigation.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Chenglong Chen
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Liang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Jie Xu
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Sun
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Kunkun Sun
- Pathology DepartmentPeking University People's HospitalBeijingChina
| | - Rongli Yang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xiaodong Tang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Wei Guo
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| |
Collapse
|
6
|
Wu W, Guo H, Jing D, Zhang Z, Zhang Z, Pu F, Yang W, Jin X, Huang X, Shao Z. Targeted Delivery of PD-L1-Derived Phosphorylation-Mimicking Peptides by Engineered Biomimetic Nanovesicles to Enhance Osteosarcoma Treatment. Adv Healthc Mater 2022; 11:e2200955. [PMID: 36123781 PMCID: PMC11468027 DOI: 10.1002/adhm.202200955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
Osteosarcoma is a rare malignant bone-originating tumor that usually occurs in young people. Programmed cell death 1 ligand 1 (PD-L1), an immune checkpoint protein, is highly expressed in osteosarcoma tissues. Several recent studies have indicated that the tumor-related role of PD-L1 in tumors, especially non-plasma membrane (NPM)-localized PD-L1, is not limited to immune regulation in osteosarcoma. Here, mass spectrometry analysis is combined with RNA-seq examination to identify the intracellular binding partners of PD-L1 and elucidate the underlying mechanism of its action. It is found that the NPM-localized PD-L1 interacted with Insulin-like growth factor binding protein-3 (IGFBP3) to promote osteosarcoma tumor growth by activating mTOR signaling. This interaction is enforced after phosphoglyceratekinase1 (PGK1)-mediated PD-L1 phosphorylation. Based on these findings, a phosphorylation-mimicking peptide is designed from PD-L1 and it is encapsulated with a Cyclic RGD (cRGD)-modified red blood cell membrane (RBCM) vesicle (Peptide@cRGD-M). The Peptide@cRGD-M precisely delivers the PD-L1-derived phosphorylation-mimicking peptide into osteosarcoma lesions and significantly promotes its therapeutic effect on the tumor. Therefore, this investigation not only highlights the function of NPM-localized PD-L1, but also uses an engineering approach to synthesize a small molecular peptide capable of inhibiting osteosarcoma growth.
Collapse
Affiliation(s)
- Wei Wu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Haoyu Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Doudou Jing
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhenhao Zhang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhicai Zhang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Feifei Pu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Xin Huang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
7
|
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13:871076. [PMID: 36311748 PMCID: PMC9608329 DOI: 10.3389/fimmu.2022.871076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors originating in bones. Its high malignancy typically manifests in lung metastasis leading to high mortality. Although remarkable advances in surgical resection and neoadjuvant chemotherapy have lengthened life expectancy and greatly improved the survival rate among OS patients, no further breakthroughs have been achieved. It is challenging to treat patients with chemoresistant tumors and distant metastases. Recent studies have identified a compelling set of links between hypoxia and chemotherapy failure. Here, we review the evidence supporting the positive effects of hypoxia in the tumor microenvironment (TME). In addition, certain anticancer effects of immune checkpoint inhibitors have been demonstrated in OS preclinical models. Continued long-term observation in clinical trials is required. In the present review, we discuss the mutualistic effects of the TME in OS treatment and summarize the mechanisms of immunotherapy and their interaction with TME when used to treat OS. We also suggest that immunotherapy, a new comprehensive and potential antitumor approach that stimulates an immune response to eliminate tumor cells, may represent an innovative approach for the development of a novel treatment regimen for OS patients.
Collapse
|
8
|
Sung JY, Kim JH, Kang HG, Park JW, Park SY, Park BK, Kim YN. ICSBP-induced PD-L1 enhances osteosarcoma cell growth. Front Oncol 2022; 12:918216. [PMID: 36249036 PMCID: PMC9555079 DOI: 10.3389/fonc.2022.918216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundInterferon (IFN) consensus sequence binding protein (ICSBP) is a transcription factor induced by IFN-γ. We previously reported that ICSBP expression promotes osteosarcoma progression by enhancing transforming growth factor-β signaling. In cancer cells, programmed death-ligand 1 (PD-L1) contributes to immune escape and may also be involved in tumor progression. Because IFN-γ induces the expression of both ICSBP and PD-L1, we explored the association between ICSBP and PD-L1 expression in terms of osteosarcoma progression.MethodsThree osteosarcoma cell lines (Saos2, U2OS, and 143B) were employed. Gene expression was measured by qRT-PCR, and protein levels were assessed by immunoblotting. PD-L1 expression was evaluated in cells overexpressing ICSBP and in ICSBP knockdown cells. The effects of PD-L1 expression on cell growth were examined by MTS assays, Incucyte analysis, soft agar assays, and three-dimensional (3D) culture. Cell cycle and apoptosis were evaluated by FACS analysis of cells stained with propidium iodide (PI) and annexin V/PI, respectively. The antitumor effects of PD-L1 knockdown without or with doxorubicin treatment were evaluated in vivo in nude mice bearing ICSBP-overexpressing 143B cell xenograft. The clinical relevance of PD-L1 and ICSBP expression was evaluated immunohistochemically using a human osteosarcoma microarray and through analysis of publicly available data using Gene Expression Profiling Interactive Analysis2.ResultsICSBP overexpression upregulated PD-L1 expression in all three cell lines, whereas ICSBP knockdown decreased the PD-L1 expression. PD-L1 knockdown attenuated the cell growth and reduced colony-forming capacity in both soft agar assays and 3D culture. PD-L1 knockdown increased apoptosis and induced G2/M arrest, which was associated with decreased expression of survivin, cyclin-dependent kinase 4 (CDK4), cyclin E, and cyclin D1 expression and increased the expression of p27, phosphorylated Cdc2, and phosphorylated Wee1. PD-L1 knockdown decreased the growth of tumor xenografts and increased the doxorubicin sensitivity of ICSBP-overexpressing 143B cells both in vitro and in vivo. PD-L1 was expressed in human osteosarcoma tissues, and its expression was moderately correlated with that of ICSBP in osteosarcoma patients.ConclusionICSBP regulates PD-L1 expression in osteosarcoma cells, and PD-L1 knockdown combined with doxorubicin treatment could represent a strategy for controlling osteosarcoma expressing ICSBP.
Collapse
Affiliation(s)
- Jee Young Sung
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, South Korea
| | - June Hyuk Kim
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Hyun Guy Kang
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Jong Woong Park
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Seog-Yun Park
- Pathology Department, National Cancer Center, Goyang, South Korea
| | - Byung-Kiu Park
- Center for Pediatric Oncology, National Cancer Center, Goyang, South Korea
- *Correspondence: Yong-Nyun Kim, ; Byung-Kiu Park,
| | - Yong-Nyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, South Korea
- *Correspondence: Yong-Nyun Kim, ; Byung-Kiu Park,
| |
Collapse
|
9
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Fleuren EDG, Terry RL, Meyran D, Omer N, Trapani JA, Haber M, Neeson PJ, Ekert PG. Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines 2021; 9:1798. [PMID: 34944614 PMCID: PMC8698536 DOI: 10.3390/biomedicines9121798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.
Collapse
Affiliation(s)
- Emmy D. G. Fleuren
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
| | - Rachael L. Terry
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children’s Hospital, Brisbane 4101, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
| |
Collapse
|
11
|
The perplexing role of immuno-oncology drugs in osteosarcoma. J Bone Oncol 2021; 31:100400. [PMID: 34786332 PMCID: PMC8577488 DOI: 10.1016/j.jbo.2021.100400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma outcomes have not improved since use of cytotoxic chemotherapy. Addition of macrophage activators and interferon have been disappointing. Combination therapies may be needed to exploit the role of the immune system.
Osteosarcoma is a rare, primary tumour of bone. Curative treatment consists of multi-agent chemotherapy and complete surgical resection. Despite the use of multi-agent chemotherapy, the risk of recurrence is high. Survival outcomes for patients with osteosarcoma have not changed since the 1980′s. Based on biologic rationale, there has been interest in adding immunotherapies to upfront curative intent chemotherapy, including mifamurtide (a macrophage activator) and interferon. However, results to date have been disappointing. In the metastatic setting, checkpoint inhibitors alone have not proven effective. Ongoing translational work is needed to further understand which patients may benefit from immune-oncology approaches with standard cytotoxic chemotherapy.
Collapse
|
12
|
Rijs Z, Jeremiasse B, Shifai N, Gelderblom H, Sier CFM, Vahrmeijer AL, van Leeuwen FWB, van der Steeg AFW, van de Sande MAJ. Introducing Fluorescence-Guided Surgery for Pediatric Ewing, Osteo-, and Rhabdomyosarcomas: A Literature Review. Biomedicines 2021; 9:biomedicines9101388. [PMID: 34680505 PMCID: PMC8533294 DOI: 10.3390/biomedicines9101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcomas are a rare heterogeneous group of malignant neoplasms of mesenchymal origin which represent approximately 13% of all cancers in pediatric patients. The most prevalent pediatric bone sarcomas are osteosarcoma (OS) and Ewing sarcoma (ES). Rhabdomyosarcoma (RMS) is the most frequently occurring pediatric soft tissue sarcoma. The median age of OS and ES is approximately 17 years, so this disease is also commonly seen in adults while non-pleiomorphic RMS is rare in the adult population. The mainstay of all treatment regimens is multimodal treatment containing chemotherapy, surgical resection, and sometimes (neo)adjuvant radiotherapy. A clear resection margin improves both local control and overall survival and should be the goal during surgery with a curative intent. Real-time intraoperative fluorescence-guided imaging could facilitate complete resections by visualizing tumor tissue during surgery. This review evaluates whether non-targeted and targeted fluorescence-guided surgery (FGS) could be beneficial for pediatric OS, ES, and RMS patients. Necessities for clinical implementation, current literature, and the positive as well as negative aspects of non-targeted FGS using the NIR dye Indocyanine Green (ICG) were evaluated. In addition, we provide an overview of targets that could potentially be used for FGS in OS, ES, and RMS. Then, due to the time- and cost-efficient translational perspective, we elaborate on the use of antibody-based tracers as well as their disadvantages and alternatives. Finally, we conclude with recommendations for the experiments needed before FGS can be implemented for pediatric OS, ES, and RMS patients.
Collapse
Affiliation(s)
- Zeger Rijs
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
- Correspondence: ; Tel.: +31-641-637-074
| | - Bernadette Jeremiasse
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Naweed Shifai
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alida F. W. van der Steeg
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Michiel A. J. van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| |
Collapse
|
13
|
Expression of programmed death ligand 1 in drug-resistant osteosarcoma: An exploratory study. Surg Open Sci 2021; 6:10-14. [PMID: 34386763 PMCID: PMC8346678 DOI: 10.1016/j.sopen.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Inhibition of the programmed death ligand 1, programmed death 1 pathway has been successfully used for treatment of multiple advanced adult cancers. However, its use in pediatric osteosarcoma is still in its infancy. In this study, we investigated programmed death ligand 1 and other checkpoint molecules' expression to determine the potential usefulness as targets for drug therapy. Methods We incubated human wild-type osteosarcoma cells with incremental concentrations of doxorubicin to create a doxorubicin-resistant cell line. Matrigel in vitro invasion assays were used to compare invasiveness. Comparative programmed death ligand 1 expression was evaluated by Western blot assays. An immuno-oncology checkpoint protein panel was used to compare concentrations of 16 other checkpoint molecules. Chi-square tests and Wilcoxon rank-sum tests were used to determine significant differences. Results A doxorubicin-resistant cell line was successfully created and was significantly more invasive than wild-type cells (0.47 vs 0.07, P < .001). On Western blot assay, doxorubicin-resistant but not wild-type cells expressed programmed death ligand 1. Doxorubicin-resistant cells had significantly higher levels of T-cell immunoglobulin-3 and cluster of differentiation 86 and higher cluster of differentiation 27, cluster of differentiation 40, lymphocyte-activation gene-3, cluster of differentiation 80, programmed death ligand 1, programmed death ligand 2, and inducible T-cell costimulatory expression than wild-type cells. Both lines expressed B- and T-lymphocyte attenuator, cluster of differentiation 28, herpesvirus entry mediator, and programmed death 1. Herpesvirus entry mediator, cluster of differentiation 40, and programmed death ligand 2 were also present in the culture media of both cell lines. Conclusion Doxorubicin-resistant osteosarcoma seems to express higher programmed death ligand 1 than nonresistant wild-type cells. Benchmarking checkpoint molecules may provide the basis for future studies that elucidate pathways of drug resistance and tumor metastasis, biomarkers for cancer prognosis or recurrence, and future targets for directed drug therapy.
Collapse
Key Words
- BTLA, B- and T-lymphocyte attenuator
- CD27, cluster of differentiation 27
- CD28, cluster of differentiation 28
- CD40, cluster of differentiation 40
- CD80, cluster of differentiation 80
- CD86, cluster of differentiation 86
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DoxR, doxorubicin resistant
- FDA, Food and Drug Administration
- GITR, glucocorticoid-induced TNFR-related protein
- GITRL, ligand for receptor TNFRSF18/AITR/GITR
- HVEM, herpesvirus entry mediator
- ICOS, inducible T-cell costimulatory (ICOS)
- LAG-3, lymphocyte-activation gene-3
- PD-1, programmed death 1
- PD-L1, programmed death ligand 1
- PD-L2, programmed death ligand 2
- TIM-3, T-cell immunoglobulin-3
- TLR-2, Toll like receptor 2
- WT, wild type
Collapse
|
14
|
Smrke A, Anderson PM, Gulia A, Gennatas S, Huang PH, Jones RL. Future Directions in the Treatment of Osteosarcoma. Cells 2021; 10:172. [PMID: 33467756 PMCID: PMC7829872 DOI: 10.3390/cells10010172] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common primary bone sarcoma and is often diagnosed in the 2nd-3rd decades of life. Response to the aggressive and highly toxic neoadjuvant methotrexate-doxorubicin-cisplatin (MAP) chemotherapy schedule is strongly predictive of outcome. Outcomes for patients with osteosarcoma have not significantly changed for over thirty years. There is a need for more effective treatment for patients with high risk features but also reduced treatment-related toxicity for all patients. Predictive biomarkers are needed to help inform clinicians to de-escalate or add therapy, including immune therapies, and to contribute to future clinical trial designs. Here, we review a variety of approaches to improve outcomes and quality of life for patients with osteosarcoma with a focus on incorporating toxicity reduction, immune therapy and molecular analysis to provide the most effective and least toxic osteosarcoma therapy.
Collapse
Affiliation(s)
- Alannah Smrke
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK; (A.S.); (S.G.)
| | - Peter M. Anderson
- Pediatric Hematology Oncology and Bone Marrow Transplantation, Cleveland Clinic R3 Main Campus, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Ashish Gulia
- Orthopedic Oncology Services, Department of Surgical Oncology, Tata Memorial Hospital, HBNI, Mumbai 400012, India;
| | - Spyridon Gennatas
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK; (A.S.); (S.G.)
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| | - Robin L. Jones
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK; (A.S.); (S.G.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
15
|
Characterization of PD-1/PD-L1 Immune Checkpoint Expression in Osteosarcoma. Diagnostics (Basel) 2020; 10:diagnostics10080528. [PMID: 32751195 PMCID: PMC7459780 DOI: 10.3390/diagnostics10080528] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Recent data have suggested that PD-1 and PD-L1 are involved in osteosarcoma (OS) pathogenesis; however, their contributions are not well-established. Here, the PD-1/PD-L1 expression was evaluated in (OS) cases. Preoperative needle biopsy specimens were obtained from 16 patients with OS. Immunostaining for CD4, CD8, PD-1, and PD-L1 was performed on pathological specimens. Clinical parameters, including age, tumor size, preoperative alkaline phosphatase (ALP) level, standardized uptake value (SUV)-max level, and survival rate, were compared between PD-1/PD-L1-positive and -negative groups. CD4-, CD8-, PD-1-, and PD-L1-positive rates among all specimens were 75%, 75%, 18.7%, and 62.5%, respectively. The rates of co-expression of CD4 and CD8 with PD-L1 were 56.2% and 50%, respectively. Tumors were significantly larger in PD-L1-negative cases than in PD-L1-positive cases. Age, size and ALP and SUV-max levels did not differ significantly between PD-1/PD-L1-positive and -negative cases. The 3-year survival rates did not differ significantly between PD-1-positive and -negative cases or between PD-L1-positive and -negative cases. However, the occurrence of cancer-related events, including recurrence, metastasis, and death was associated with the PD-1-negative and PD-L1-positive status. The PD-1/PD-L1 checkpoint is likely involved in the immune microenvironment in OS and may be involved in the occurrence of cancer-related events.
Collapse
|