1
|
Sicinska E, Sudhakara Rao Kola V, Kerfoot JA, Taddei ML, Al-Ibraheemi A, Hsieh YH, Church AJ, Landesman-Bollag E, Landesman Y, Hemming ML. ASPSCR1::TFE3 Drives Alveolar Soft Part Sarcoma by Inducing Targetable Transcriptional Programs. Cancer Res 2024; 84:2247-2264. [PMID: 38657118 PMCID: PMC11250573 DOI: 10.1158/0008-5472.can-23-2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignancy driven by the ASPSCR1::TFE3 fusion. A better understanding of the mechanisms by which this oncogenic transcriptional regulator drives cancer growth is needed to help identify potential therapeutic targets. In this study, we characterized the transcriptional and chromatin landscapes of ASPS tumors and preclinical models, identifying the essential role of ASPSCR1::TFE3 in tumor cell viability by regulating core transcriptional programs involved in cell proliferation, angiogenesis, and mitochondrial biology. ASPSCR1::TFE3 directly interacted with key epigenetic regulators at enhancers and promoters to support ASPS-associated transcription. Among the effector programs driven by ASPSCR1::TFE3, cell proliferation was driven by high levels of cyclin D1 expression. Disruption of cyclin D1/CDK4 signaling led to a loss of ASPS proliferative capacity, and combined inhibition of CDK4/6 and angiogenesis halted tumor growth in xenografts. These results define the ASPS oncogenic program, reveal mechanisms by which ASPSCR1::TFE3 controls tumor biology, and identify a strategy for therapeutically targeting tumor cell-intrinsic vulnerabilities. Significance: The ASPSCR1::TFE3 fusion propels the growth of alveolar soft part sarcoma by activating transcriptional programs that regulate proliferation, angiogenesis, mitochondrial biogenesis, and differentiation and can be therapeutically targeted to improve treatment.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Sarcoma, Alveolar Soft Part/genetics
- Sarcoma, Alveolar Soft Part/pathology
- Sarcoma, Alveolar Soft Part/metabolism
- Humans
- Animals
- Mice
- Cell Proliferation/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Gene Expression Regulation, Neoplastic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Female
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijaya Sudhakara Rao Kola
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joseph A. Kerfoot
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Hsuan Hsieh
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alanna J. Church
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yosef Landesman
- Cure Alveolar Soft Part Sarcoma International, Brookline, Massachusetts, USA
| | - Matthew L. Hemming
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Dexheimer TS, Coussens NP, Silvers T, Wright J, Morris J, Doroshow JH, Teicher BA. Multicellular Complex Tumor Spheroid Response to DNA Repair Inhibitors in Combination with DNA-damaging Drugs. CANCER RESEARCH COMMUNICATIONS 2023; 3:1648-1661. [PMID: 37637936 PMCID: PMC10452929 DOI: 10.1158/2767-9764.crc-23-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Multicellular spheroids comprised of malignant cells, endothelial cells, and mesenchymal stem cells served as an in vitro model of human solid tumors to investigate the potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways. The DNA-damaging drugs, topotecan, trabectedin, and temozolomide were combined with varied inhibitors of DNA damage response enzymes including PARP (olaparib or talazoparib), ATM (ataxia telangiectasia mutated; AZD-1390), ATR (ataxia telangiectasia and Rad3-related protein; berzosertib or elimusertib), and DNA-PK (DNA-dependent protein kinase; nedisertib or VX-984). A range of clinically achievable concentrations were tested up to the clinical Cmax, if known. Mechanistically, the types of DNA damage induced by temozolomide, topotecan, and trabectedin are distinct, which was apparent from the response of spheroids to combinations with various DNA repair inhibitors. Although most combinations resulted in additive cytotoxicity, synergistic activity was observed for temozolomide combined with PARP inhibitors as well as combinations of the ATM inhibitor AZD-1390 with either topotecan or trabectedin. These findings might provide guidance for the selection of anticancer agent combinations worthy of further investigation. Significance Clinical efficacy of DNA-damaging anticancer drugs can be influenced by the DNA damage response in tumor cells. The potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways was assessed in multicellular tumor spheroids. Although most combinations demonstrated additive cytotoxicity, synergistic cytotoxicity was observed for several drug combinations.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Silvers
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John Wright
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| |
Collapse
|
3
|
Tanaka M, Chuaychob S, Homme M, Yamazaki Y, Lyu R, Yamashita K, Ae K, Matsumoto S, Kumegawa K, Maruyama R, Qu W, Miyagi Y, Yokokawa R, Nakamura T. ASPSCR1::TFE3 orchestrates the angiogenic program of alveolar soft part sarcoma. Nat Commun 2023; 14:1957. [PMID: 37029109 PMCID: PMC10082046 DOI: 10.1038/s41467-023-37049-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Surachada Chuaychob
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ruyin Lyu
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kyoko Yamashita
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Matsumoto
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Wei Qu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
4
|
Isoyama S, Tamaki N, Noguchi Y, Okamura M, Yoshimatsu Y, Kondo T, Suzuki T, Yaguchi SI, Dan S. Subtype-selective induction of apoptosis in translocation-related sarcoma cells induced by PUMA and BIM upon treatment with pan-PI3K inhibitors. Cell Death Dis 2023; 14:169. [PMID: 36849535 PMCID: PMC9971170 DOI: 10.1038/s41419-023-05690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Translocation-related sarcomas (TRSs) harbor an oncogenic fusion gene generated by chromosome translocation and account for approximately one-third of all sarcomas; however, effective targeted therapies have yet to be established. We previously reported that a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, ZSTK474, was effective for the treatment of sarcomas in a phase I clinical trial. We also demonstrated the efficacy of ZSTK474 in a preclinical model, particularly in cell lines from synovial sarcoma (SS), Ewing's sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS), all of which harbor chromosomal translocations. ZSTK474 selectively induced apoptosis in all these sarcoma cell lines, although the precise mechanism underlying the induction of apoptosis remained unclear. In the present study, we aimed to determine the antitumor effect of PI3K inhibitors, particularly with regards to the induction of apoptosis, against various TRS subtypes using cell lines and patient-derived cells (PDCs). All of the cell lines derived from SS (six), ES (two) and ARMS (one) underwent apoptosis accompanied by the cleavage of poly-(ADP-ribose) polymerase (PARP) and the loss of mitochondrial membrane potential. We also observed apoptotic progression in PDCs from SS, ES and clear cell sarcoma (CCS). Transcriptional analyses revealed that PI3K inhibitors triggered the induction of PUMA and BIM and the knockdown of these genes by RNA interference efficiently suppressed apoptosis, suggesting their functional involvement in the progression of apoptosis. In contrast, TRS-derived cell lines/PDCs from alveolar soft part sarcoma (ASPS), CIC-DUX4 sarcoma and dermatofibrosarcoma protuberans failed to undergo apoptosis nor induce PUMA and BIM expression, as well as cell lines derived from non-TRSs and carcinomas. Thus, we conclude that PI3K inhibitors induce apoptosis in selective TRSs such as ES and SS via the induction of PUMA and BIM and the subsequent loss of mitochondrial membrane potential. This represents proof of concept for PI3K-targeted therapy, particularly such TRS patients.
Collapse
Affiliation(s)
- Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Naomi Tamaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yutaka Noguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yuki Yoshimatsu
- Department of Patient-derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shin-Ichi Yaguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- OHARA Pharmaceutical Co., Ltd., 36F St. Luke's Tower, 8-1 Akashi-cho, Chuo-ku, Tokyo, 104-6591, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
5
|
Yoshimatsu Y, Noguchi R, Tsuchiya R, Sei A, Sugaya J, Fukushima S, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Hum Cell 2020; 33:1302-1310. [PMID: 32648033 DOI: 10.1007/s13577-020-00382-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Alveolar soft-part sarcoma is a mesenchymal malignancy characterized by the rearrangement of ASPSCR1 and TFE3 and a histologically distinctive pseudoalveolar pattern. Although alveolar soft-part sarcoma takes an indolent course, its long-term prognosis is poor because of late distant metastases. Currently, curative treatments have not been found for alveolar soft-part sarcoma, and hence, a novel therapeutic strategy has long been required. Patient-derived cell lines comprise an important tool for basic and preclinical research. However, few cell lines from alveolar soft-part sarcoma have been reported in the literature because it is an extremely rare malignancy, accounting for less than 1% of all soft-tissue sarcomas. This study aimed to establish a novel alveolar soft-part sarcoma cell line. Using surgically-resected tumor tissue of alveolar soft-part sarcoma, we successfully established a cell line and named it NCC-ASPS1-C1. The NCC-ASPS1-C1 cells harbored an ASPSCR1-TFE3 fusion gene and exhibited slow growth, and spheroid formation. On the other hand, NCC-ASPS1-C1 did not show the capability of invasion. We screened the antiproliferative effects of 195 anticancer agents, including Food and Drug Administration-approved anticancer drugs. We found that the MET inhibitor tivantinib and multi-kinase inhibitor orantinib inhibited the proliferation of NCC-ASPS1-C1 cells. The clinical utility and molecular mechanisms of antitumor effects of these drugs are worth investigating in the further studies, and NCC-ASPS1-C1 cells will be a useful tool for the in vitro study of alveolar soft-part sarcoma.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Suguru Fukushima
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
6
|
Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020; 8:e9394. [PMID: 32596059 PMCID: PMC7307565 DOI: 10.7717/peerj.9394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.
Collapse
|
7
|
Kim M, Kim TM, Keam B, Kim YJ, Paeng JC, Moon KC, Kim DW, Heo DS. A Phase II Trial of Pazopanib in Patients with Metastatic Alveolar Soft Part Sarcoma. Oncologist 2018; 24:20-e29. [PMID: 30254189 PMCID: PMC6324645 DOI: 10.1634/theoncologist.2018-0464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned. Pazopanib shows a modest efficacy in metastatic alveolar soft part sarcoma. Clinical outcomes were comparable to those in previous studies using antiangiogenic drugs. Further prospective studies evaluating the benefit of pazopanib in alveolar soft part sarcoma with a larger sample are warranted to validate results.
Background. Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignant tumor characterized by an unbalanced translocation, t(X;17)(p11.2;q25), which leads to the fusion of ASPSCR1 to the TFE3 transcription factor. Because this results in the upregulation of angiogenesis‐related transcripts, antiangiogenic drugs have been used in ASPS patients. Methods. This open‐label, single‐arm, multicenter, investigator‐initiated phase II trial was designed to evaluate efficacy and safety of pazopanib 800 mg once daily in patients with metastatic ASPS. The primary endpoint was investigator‐assessed overall response rate (ORR), and secondary endpoints were toxicity, progression‐free survival (PFS), and overall survival (OS). 68Ga‐RGD (Arg‐Gly‐Asp) positron emission tomography (PET) scan and gene expression profiling using NanoString platform were performed for biomarker analysis. Results. Six patients with histologically confirmed metastatic ASPS were enrolled between December 2013 and November 2014. Among six patients, one achieved a partial response (PR) (ORR 16.7%) and five patients showed stable disease (SD). With a median follow‐up of 33 months (range 18.7–39.3 months), median PFS was 5.5 months (95% confidence interval [CI] 3.4–7.6 months), and median OS was not reached. There were no severe toxicities except one patient with grade 3 diarrhea. Conclusion. Pazopanib showed modest antitumor activity with manageable toxicities for patients with metastatic ASPS.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Mukaihara K, Tanabe Y, Kubota D, Akaike K, Hayashi T, Mogushi K, Hosoya M, Sato S, Kobayashi E, Okubo T, Kim Y, Kohsaka S, Saito T, Kaneko K, Suehara Y. Cabozantinib and dastinib exert anti-tumor activity in alveolar soft part sarcoma. PLoS One 2017; 12:e0185321. [PMID: 28945796 PMCID: PMC5612696 DOI: 10.1371/journal.pone.0185321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Alveolar soft part sarcoma (ASPS) is an extremely rare metastatic soft tissue tumor with a poor prognosis for which no effective systemic therapies have yet been established. Therefore, the development of novel effective treatment approaches is required. Tyrosine kinases (TKs) are being increasingly used as therapeutic targets in a variety of cancers. The purpose of this study was to identify novel therapeutic target TKs and to clarify the efficacy of TK inhibitors (TKIs) in the treatment of ASPS. Experimental design To identify novel therapeutic target TKs in ASPS, we evaluated the antitumor effects and kinase activity of three TKIs (pazopanib, dasatinib, and cabozantinib) against ASPS cells using an in vitro assay. Based on these results, we then investigated the phosphorylation activities of the identified targets using western blotting, in addition to examining antitumor activity through in vivo assays of several TKIs to determine both the efficacy of these substances and accurate targets. Results In cell proliferation and invasion assays using pazopanib, cabozantinib, and dasatinib, all three TKIs inhibited the cell growth in ASPS cells. Statistical analyses of the cell proliferation and invasion assays revealed that dasatinib had a significant inhibitory effect in cell proliferation assays, and cabozantinib exhibited marked inhibitory effects on cellular functions in both assays. Through western blotting, we also confirmed that cabozantinib inhibited c-MET phosphorylation and dasatinib inhibited SRC phosphorylation in dose-dependent fashion. Mice that received cabozantinib and dasatinib had significantly smaller tumor volumes than control animals, demonstrating the in vivo antitumor activity of, these substances. Conclusions Our findings suggest that cabozantinib and dasatinib may be more effective than pazopanib against ASPS cells. These in vitro and in vivo data suggest that c-MET may be a potential therapeutic target in ASPS, and cabozantinib may be a particularly useful therapeutic option for patients with ASPS, including those with pazopanib-resistant ASPS.
Collapse
Affiliation(s)
- Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kaoru Mogushi
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Hosoya
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo, Japan
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Balasubramanian P, Kinders RJ, Kummar S, Gupta V, Hasegawa D, Menachery A, Lawrence SM, Wang L, Ferry-Galow K, Davis D, Parchment RE, Tomaszewski JE, Doroshow JH. Antibody-independent capture of circulating tumor cells of non-epithelial origin with the ApoStream® system. PLoS One 2017; 12:e0175414. [PMID: 28403214 PMCID: PMC5389826 DOI: 10.1371/journal.pone.0175414] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are increasingly employed for research and clinical monitoring of cancer, though most current methods do not permit the isolation of non-epithelial tumor cells. Furthermore, CTCs isolated with antibody-dependent methods are not suitable for downstream experimental uses, including in vitro culturing and implantation in vivo. In the present study, we describe the development, validation, and transfer across laboratories of a new antibody-independent device for the enrichment of CTCs from blood samples of patients with various cancer diagnoses. The ApoStream® device uses dielectrophoresis (DEP) field-flow assist to separate non-hematopoietic cells from the peripheral blood mononuclear fraction by exposing cells in a laminar flow stream to a critical alternating current frequency. The ApoStream® device was calibrated and validated in a formal cross-laboratory protocol using 3 different cancer cell lines spanning a range of distinct phenotypes (A549, MDA-MB-231, and ASPS-1). In spike-recovery experiments, cancer cell recovery efficiencies appeared independent of spiking level and averaged between 68% and 55%, depending on the cell line. No inter-run carryover was detected in control samples. Moreover, the clinical-readiness of the device in the context of non-epithelial cancers was evaluated with blood specimens from fifteen patients with metastatic sarcoma. The ApoStream® device successfully isolated CTCs from all patients with sarcomas examined, and the phenotypic heterogeneity of the enriched cells was demonstrated by fluorescence in situ hybridization or with multiplex immunophenotyping panels. Therefore, the ApoStream® technology expands the clinical utility of CTC evaluation to mesenchymal cancers.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Kinders
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Vishal Gupta
- ApoCell, Inc., Houston, Texas, United States of America
| | | | | | - Scott M. Lawrence
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lihua Wang
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Katherine Ferry-Galow
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Darren Davis
- ApoCell, Inc., Houston, Texas, United States of America
| | - Ralph E. Parchment
- Laboratory of Human Toxicology and Pharmacology, Applied/ Developmental Research Support Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail:
| | - Joseph E. Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Tanaka M, Homme M, Yamazaki Y, Shimizu R, Takazawa Y, Nakamura T. Modeling Alveolar Soft Part Sarcoma Unveils Novel Mechanisms of Metastasis. Cancer Res 2016; 77:897-907. [DOI: 10.1158/0008-5472.can-16-2486] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/05/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
|
12
|
Nakayama R, Zhang YX, Czaplinski JT, Anatone AJ, Sicinska ET, Fletcher JA, Demetri GD, Wagner AJ. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget 2016; 7:16581-92. [PMID: 26918731 PMCID: PMC4941336 DOI: 10.18632/oncotarget.7667] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Selinexor is an orally bioavailable selective inhibitor of nuclear export that has been demonstrated to have preclinical activity in various cancer types and that is currently in Phase I and II clinical trials for advanced cancers. In this study, we evaluated the effects of selinexor in several preclinical models of various sarcoma subtypes. The efficacy of selinexor was investigated in vitro and in vivo using 17 cell lines and 9 sarcoma xenograft models including gastrointestinal stromal tumor (GIST), liposarcoma (LPS), leiomyosarcoma, rhabdomyosarcoma, undifferentiated sarcomas, and alveolar soft part sarcoma (ASPS). Most sarcoma cell lines were sensitive to selinexor with IC50s ranging from 28.8 nM to 218.2 nM (median: 66.1 nM). Selinexor suppressed sarcoma tumor xenograft growth, including models of ASPS that were resistant in vitro. In GIST cells with KIT mutations, selinexor induced G1- arrest without attenuation of phosphorylation of KIT, AKT, or MAPK, in contrast to imatinib. In LPS cell lines with MDM2 and CDK4 amplification, selinexor induced G1-arrest and apoptosis irrespective of p53 expression or mutation and irrespective of RB expression. Selinexor increased p53 and p21 expression at the protein but not RNA level, indicating a post-transcriptional effect. These results indicate that selinexor has potent in vitro and in vivo activity against a wide variety of sarcoma models by inducing G1-arrest independent of known molecular mechanisms in GIST and LPS. These studies further justify the exploration of selinexor in clinical trials targeting various sarcoma subtypes.
Collapse
Affiliation(s)
- Robert Nakayama
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yi-Xiang Zhang
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey T. Czaplinski
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alex J. Anatone
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ewa T. Sicinska
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George D. Demetri
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Andrew J. Wagner
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Goodwin ML, Jin H, Straessler K, Smith-Fry K, Zhu JF, Monument MJ, Grossmann A, Randall RL, Capecchi MR, Jones KB. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell 2014; 26:851-862. [PMID: 25453902 PMCID: PMC4327935 DOI: 10.1016/j.ccell.2014.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/08/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Alveolar soft part sarcoma (ASPS), a deadly soft tissue malignancy with a predilection for adolescents and young adults, associates consistently with t(X;17) translocations that generate the fusion gene ASPSCR1-TFE3. We proved the oncogenic capacity of this fusion gene by driving sarcomagenesis in mice from conditional ASPSCR1-TFE3 expression. The completely penetrant tumors were indistinguishable from human ASPS by histology and gene expression. They formed preferentially in the anatomic environment highest in lactate, the cranial vault, expressed high levels of lactate importers, harbored abundant mitochondria, metabolized lactate as a metabolic substrate, and responded to the administration of exogenous lactate with tumor cell proliferation and angiogenesis. These data demonstrate lactate's role as a driver of alveolar soft part sarcomagenesis.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Huifeng Jin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Krystal Straessler
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael J Monument
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Allie Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - R Lor Randall
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Mario R Capecchi
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev Mol Med 2014; 16:e17. [PMID: 25417860 DOI: 10.1017/erm.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angptl2 is a multifaceted protein, displaying both physiological and pathological functions, in which scientific and clinical interest is growing exponentially within the past few years. Its physiological functions are not well understood, but angptl2 was first acknowledged for its pro-angiogenic and antiapoptotic capacities. In addition, angptl2 can be considered a growth factor, since it increases survival and expansion of hematopoietic stem cells and may promote vasculogenesis. Finally, angptl2 has an important, but largely unrecognised, physiological role: in the cytosol, angptl2 binds to type 1A angiotensin II receptors and induces their recycling, with recovery of the receptor signal functions. Despite these important physiological properties, angptl2 is better acknowledged for its deleterious pro-inflammatory properties and its contribution in multiple chronic diseases such as cancer, diabetes, atherosclerosis, metabolic disorders and many other chronic diseases. This review aims at presenting an updated description of both the beneficial and deleterious biological properties of angptl2, in addition to its molecular signalling pathways and transcriptional regulation. The multiplicity of diseases in which angptl2 contributes makes it a new highly relevant clinical therapeutic target.
Collapse
|
15
|
Knaack SA, Siahpirani AF, Roy S. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components. Cancer Inform 2014; 13:69-84. [PMID: 25374456 PMCID: PMC4213198 DOI: 10.4137/cin.s14058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022] Open
Abstract
Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers. An emerging challenge is to devise computational approaches that systematically compare these genomic data sets across different cancer types that identify common and cancer-specific network components. We present a module- and network-based characterization of transcriptional patterns in six different cancers being studied in TCGA: breast, colon, rectal, kidney, ovarian, and endometrial. Our approach uses a recently developed regulatory network reconstruction algorithm, modular regulatory network learning with per gene information (MERLIN), within a stability selection framework to predict regulators for individual genes and gene modules. Our module-based analysis identifies a common theme of immune system processes in each cancer study, with modules statistically enriched for immune response processes as well as targets of key immune response regulators from the interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) families. Comparison of the inferred regulatory networks from each cancer type identified a core regulatory network that included genes involved in chromatin remodeling, cell cycle, and immune response. Regulatory network hubs included genes with known roles in specific cancer types as well as genes with potentially novel roles in different cancer types. Overall, our integrated module and network analysis recapitulated known themes in cancer biology and additionally revealed novel regulatory hubs that suggest a complex interplay of immune response, cell cycle, and chromatin remodeling across multiple cancers.
Collapse
Affiliation(s)
- Sara A Knaack
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Computer Sciences, University of Wisconsin, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
16
|
Covell DG, Wallqvist A, Kenney S, Vistica DT. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets. PLoS One 2012; 7:e48023. [PMID: 23226201 PMCID: PMC3511488 DOI: 10.1371/journal.pone.0048023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/21/2012] [Indexed: 12/20/2022] Open
Abstract
Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1), was analyzed jointly with patient ASPL-TFE3 (t(X;17)(p11;q25)) fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17)(p11;q25) translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1), cell adhesion (ARHGD1A), cell division (CDC6), control of meiosis (RAD51L3) and mitosis (BIRC5), and chemokine-related protein tyrosine kinase activity (CCL4).
Collapse
Affiliation(s)
- David G Covell
- Developmental Therapeutics Program, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA.
| | | | | | | |
Collapse
|
17
|
Searching for molecular targets in sarcoma. Biochem Pharmacol 2012; 84:1-10. [PMID: 22387046 DOI: 10.1016/j.bcp.2012.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/18/2022]
Abstract
Sarcoma are about 1% of cancers. Within that 1% are widely varied tumors now divided into types and subtypes. Sarcoma occur in patients of all ages with frequency spread evenly over the human age range. Although the specific cell of origin of many sarcoma remains unclear, sarcoma are all tumors of mesenchymal origin. The mesenchymal stem cell, a pluripotent cell, which gives rise to varied differentiated cells including osteocytes, adipocytes, chondrocytes, muscle cells, fibroblasts, neural cells and stromal cells, is the most likely ultimate cell of origin for sarcoma. When mesenchymal stem cell genetics go awry and malignant transformation occurs sarcoma including osteosarcoma, Ewing's sarcoma, chondrosarcoma, rhabdomyosarcoma, synovial sarcoma fibrosarcoma, liposarcoma and many others can initiate. Our knowledge of sarcoma genetics is increasing rapidly. Two general groups, sarcoma arising from chromosomal translocations and sarcoma with very complex genetics, can be identified. Genes that are frequently mutated in sarcoma include TP53, NF1, PIK3CA, HDAC1, IDH1 and 2, KDR, KIT and MED12. Genes that are frequently amplified in sarcoma include CDK4, YEATS4, HMGA2, MDM2, JUN, DNM3, FLT4, MYCN, MAP3K5, GLI1 and the microRNAs miR-214 and miR-199a2. Genes that are upregulated in sarcoma include MUC4, CD24, FOXL1, ANGPTL2, HIF1α, MDK, cMET, TIMP-2, PRL, PCSK1, IGFR-1, TIE1, KDR, TEK, FLT1 and several microRNAs. While some alterations occur in specific subtypes of sarcoma, others cross several sarcoma types. Discovering and developing new therapeutic approaches for these relentless diseases is critical. The detailed knowledge of sarcoma genetics may allow development of sarcoma subtype-targeted therapeutics.
Collapse
|