1
|
Blachier J, Cleret A, Guerin N, Gil C, Fanjat JM, Tavernier F, Vidault L, Gallix F, Rama N, Rossignol R, Piedrahita D, Andrivon A, Châlons-Cottavoz M, Aguera K, Gay F, Horand F, Laperrousaz B. L-asparaginase anti-tumor activity in pancreatic cancer is dependent on its glutaminase activity and resistance is mediated by glutamine synthetase. Exp Cell Res 2023; 426:113568. [PMID: 36967104 DOI: 10.1016/j.yexcr.2023.113568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.
Collapse
|
2
|
Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol 2022; 19:342-355. [PMID: 35318469 DOI: 10.1038/s41571-022-00607-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a potent therapeutic approach for patients with certain haematological cancers, with multiple CAR T cell products currently approved by the FDA for those with relapsed and/or refractory B cell malignancies. However, in order to derive the desired level of effectiveness, patients need to successfully receive the CAR T cell infusion in a timely fashion. This process entails apheresis of the patient's T cells, followed by CAR T cell manufacture. While awaiting infusion at an authorized treatment centre, patients may receive interim disease-directed therapy. Most patients will also receive a course of pre-CAR T cell lymphodepletion, which has emerged as an important factor in enabling durable responses. The time between apheresis and CAR T cell infusion is often not a simple journey, with each milestone being a critical step that can have important downstream consequences for the ability to receive the infusion and the strength of clinical responses. In this Review, we provide a summary of the many considerations for preparing patients with B cell non-Hodgkin lymphoma or acute lymphoblastic leukaemia for CAR T cell therapy, and outline current limitations and areas for future research.
Collapse
|
3
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Liu WJ, Wang H, Peng XW, Wang WD, Liu NW, Wang Y, Lu Y. Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro. Onco Targets Ther 2018; 11:6605-6615. [PMID: 30349294 PMCID: PMC6188207 DOI: 10.2147/ott.s155930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Although asparagine synthetase (AsnS) is associated with drug resistance in leukemia, its function in extranodal natural killer (NK)/T-cell lymphoma (ENKTL) remains unclear. Methods The present study investigated the relationship between baseline AsnS mRNA levels and response to asparaginase in ENKTL cell lines. It also determined whether upregulating or downregulating the AsnS mRNA level induces or reverses asparaginase-resistant phenotype. Results Interestingly, considerable differences were observed in the sensitivity to asparaginase of the five ENKTL cell lines. The AsnS expression levels were positively correlated with the IC50 values. In addition, the asparaginase resistance was induced or reversed by upregulating or downregulating the AsnS mRNA level in vivo and in vitro. Functional analyses indicated that AsnS did not affect the proliferation and apoptosis of ENKTL cells in the absence of asparaginase. Conclusion Together, the data stress the importance of AsnS in the sensitivity to asparaginase in ENKTL and suggest a different therapeutic strategy for patients with a different level of AsnS expression.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Hua Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Xiong-Wen Peng
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Wei-da Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Na-Wei Liu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Yang Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Yue Lu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| |
Collapse
|
5
|
Emadi A, Law JY, Strovel ET, Lapidus RG, Jeng LJB, Lee M, Blitzer MG, Carter-Cooper BA, Sewell D, Van Der Merwe I, Philip S, Imran M, Yu SL, Li H, Amrein PC, Duong VH, Sausville EA, Baer MR, Fathi AT, Singh Z, Bentzen SM. Asparaginase Erwinia chrysanthemi effectively depletes plasma glutamine in adult patients with relapsed/refractory acute myeloid leukemia. Cancer Chemother Pharmacol 2017; 81:217-222. [PMID: 29119293 DOI: 10.1007/s00280-017-3459-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Depletion of glutamine (Gln) has emerged as a potential therapeutic approach in the treatment of acute myeloid leukemia (AML), as neoplastic cells require Gln for synthesis of cellular components essential for survival. Asparaginases deplete Gln, and asparaginase derived from Erwinia chrysanthemi (Erwinaze) appears to have the greatest glutaminase activity of the available asparaginases. In this Phase I study, we sought to determine the dose of Erwinaze that safely and effectively depletes plasma Gln levels to ≤ 120 μmol/L in patients with relapsed or refractory (R/R) AML. Five patients were enrolled before the study was halted due to issues with Erwinaze manufacturing supply. All patients received Erwinaze at a dose of 25,000 IU/m2 intravenously three times weekly for 2 weeks. Median trough plasma Gln level at 48 h after initial Erwinaze administration was 27.6 μmol/L, and 80% (lower limit of 1-sided 95% CI 34%) of patients achieved at least one undetectable plasma Gln value (< 12.5 μmol/L), with the fold reduction (FR) in Gln level at 3 days, relative to baseline, being 0.16 (p < 0.001 for rejecting FR = 1). No dose-limiting toxicities were identified. Two patients responded, one achieved partial remission and one achieved hematologic improvement after six doses of Erwinaze monotherapy. These data suggest asparaginase-induced Gln depletion may have an important role in the management of patients with AML, and support more pharmacologic and clinical studies on the mechanistically designed asparaginase combinations in AML.
Collapse
Affiliation(s)
- Ashkan Emadi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA. .,Department of Medicine, University of Maryland, Baltimore, USA. .,Department of Pharmacology, University of Maryland, Baltimore, USA.
| | - Jennie Y Law
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Department of Medicine, University of Maryland, Baltimore, USA
| | - Erin T Strovel
- Department of Pediatrics, University of Maryland, Baltimore, USA
| | - Rena G Lapidus
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Department of Medicine, University of Maryland, Baltimore, USA
| | - Linda J B Jeng
- Department of Medicine, University of Maryland, Baltimore, USA.,Department of Pediatrics, University of Maryland, Baltimore, USA.,Department of Pathology, University of Maryland, Baltimore, USA
| | - Myounghee Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA
| | - Miriam G Blitzer
- Department of Pediatrics, University of Maryland, Baltimore, USA
| | | | - Danielle Sewell
- Department of Medicine, University of Maryland, Baltimore, USA
| | | | - Sunita Philip
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA
| | - Mohammad Imran
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA
| | - Stephen L Yu
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA
| | - Hongxia Li
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA
| | - Philip C Amrein
- Massachusetts General Hospital Harvard Medical School, Boston, USA
| | - Vu H Duong
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Department of Medicine, University of Maryland, Baltimore, USA
| | - Edward A Sausville
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Department of Medicine, University of Maryland, Baltimore, USA.,Department of Pharmacology, University of Maryland, Baltimore, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Department of Medicine, University of Maryland, Baltimore, USA
| | - Amir T Fathi
- Massachusetts General Hospital Harvard Medical School, Boston, USA
| | - Zeba Singh
- Department of Pathology, University of Maryland, Baltimore, USA
| | - Søren M Bentzen
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, USA.,Epidemiology and Public Health, University of Maryland, Baltimore, USA
| |
Collapse
|
6
|
Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, Ianora A. De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep 2017; 7:11701. [PMID: 28916825 PMCID: PMC5601461 DOI: 10.1038/s41598-017-12092-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/04/2017] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are phytoplanktonic organisms found in both freshwater and marine habitats. They are often studied because related to harmful algal blooms but they are also known to produce bioactive compounds for the treatment of human pathologies. The aim of this study was to sequence the full transcriptome of the dinoflagellate Amphidinium carterae in both nitrogen-starved and -replete culturing conditions (1) to evaluate the response to nitrogen starvation at the transcriptional level, (2) to look for possible polyketide synthases (PKSs) in the studied clone (genes that may be involved in the synthesis of bioactive compounds), (3) if present, to evaluate if nutrient starvation can influence PKS expression, (4) to look for other possible enzymes of biotechnological interest and (5) to test strain cytotoxicity on human cell lines. Results showed an increase in nitrogen metabolism and stress response in nitrogen-starved cells and confirmed the presence of a type I β-ketosynthase. In addition, L-asparaginase (used for the treatment of Leukemia and for acrylamide reduction in food industries) and cellulase (useful for biofuel production and other industrial applications) have been identified for the first time in this species, giving new insights into possible biotechnological applications of dinoflagellates.
Collapse
Affiliation(s)
- Chiara Lauritano
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Daniele De Luca
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Alberto Ferrarini
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carla Avanzato
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Minio
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesco Esposito
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
7
|
Labrou NE, Muharram MM. Biochemical characterization and immobilization of Erwinia carotovora l -asparaginase in a microplate for high-throughput biosensing of l -asparagine. Enzyme Microb Technol 2016; 92:86-93. [DOI: 10.1016/j.enzmictec.2016.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
8
|
Prihanto AA, Wakayama M. Marine Microorganism: An Underexplored Source of l-Asparaginase. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:1-25. [PMID: 27770857 DOI: 10.1016/bs.afnr.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
l-Asparaginase (EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of l-asparagine to l-aspartic acid. This enzyme has an important role in medicine and food. l-Asparaginase is a potential drug in cancer therapy. Furthermore, it is also applied for reducing acrylamide, a carcinogenic compound in baked and fried foods. Until now, approved l-asparaginases for both applications are few due to their lack of appropriate properties. As a result, researchers have been enthusiastically seeking new sources of enzyme with better performance. A great number of terrestrial l-asparaginase-producing microorganisms have been reported but unfortunately, almost all failed to meet criteria for cancer therapy and acrylamide reducing agent. As a largest area than Earth, marine environment, by contrast, has not been optimally explored yet. So far, a great challenge facing an exploration of marine microorganisms is mainly due to their harsh, mysterious, and dangerous environment. It is clear that marine environment, a gigantic potential source for marine natural products is scantily revealed, although several approaches and technologies have been developed. This chapter presents the historical of l-asparaginase discovery and applications. It is also discussed, how the marine environment, even though offering a great potency but is still one of the less explored area for l-asparaginase-producing microorganisms.
Collapse
Affiliation(s)
- A A Prihanto
- Faculty of Fisheries and Marine Science, Brawijaya University, Malang, Indonesia.
| | - M Wakayama
- College of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
9
|
Emadi A, Bade NA, Stevenson B, Singh Z. Minimally-Myelosuppressive Asparaginase-Containing Induction Regimen for Treatment of a Jehovah's Witness with mutant IDH1/NPM1/NRAS Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2016; 9:ph9010012. [PMID: 27064021 PMCID: PMC4812376 DOI: 10.3390/ph9010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 03/08/2016] [Indexed: 12/27/2022] Open
Abstract
Treatment of patients with acute myeloid leukemia (AML) who do not wish to accept blood product transfusion, including Jehovah’s Witnesses, is extremely challenging. The use of conventional chemotherapy for induction of complete remission (CR) results in profound anemia and thrombocytopenia requiring frequent transfusions of blood products, without which such treatment will be life-threatening. Finding a well tolerable, minimally myelosuppressive induction regimen for such patients with AML is a clear example of area of unmet medical need. Here, we report a successful treatment of a 52-year-old Jehovah’s Witness with newly diagnosed AML with peg-asparaginase, vincristine and methylprednisolone. The AML was characterized with normal karyotype, and mutations in isocitrate dehydrogenase 1 (IDH1-Arg132Ser), nucleophosmin 1 (NPM1-Trp289Cysfs*12) and neuroblastoma RAS viral oncogene homolog (NRAS-G1y12Va1). After one 28-day cycle of treatment, the patient achieved complete remission with incomplete count recovery (CRi) and after the second cycle, he achieved CR with full blood count recovery. The patient has never received any blood products. Notwithstanding that myeloperoxidase-induced oxidative degradation of vincristine results in its lack of activity as monotherapy in AML, its combination with corticosteroid and asparaginase has resulted in a robust remission in this patient. Diminished steroid clearance by asparaginase activity as well as reduction in serum glutamine level induced by glutaminase enzymatic activity of asparaginase may have contributed to effective killing of the myeloblasts that carry IDH1/NPM1/NRAS mutations. In conclusion, asparaginase-containing regimens, which are approved for treatment of acute lymphoblastic leukemia (ALL) but not AML, can be used to treat patients with AML who do not accept blood transfusion.
Collapse
Affiliation(s)
- Ashkan Emadi
- School of Medicine, Marlene & Stewart Greenebaum Cancer Center, University of Maryland, 22 South Greene Street, Room N9E24, Baltimore, MD 21201, USA.
| | - Najeebah A Bade
- School of Medicine, Marlene & Stewart Greenebaum Cancer Center, University of Maryland, 22 South Greene Street, Room N9E24, Baltimore, MD 21201, USA.
| | - Brandi Stevenson
- School of Medicine, Marlene & Stewart Greenebaum Cancer Center, University of Maryland, 22 South Greene Street, Room N9E24, Baltimore, MD 21201, USA.
| | - Zeba Singh
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Fathi AT, Wander SA, Faramand R, Emadi A. Biochemical, Epigenetic, and Metabolic Approaches to Target IDH Mutations in Acute Myeloid Leukemia. Semin Hematol 2015; 52:165-71. [PMID: 26111463 DOI: 10.1053/j.seminhematol.2015.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy associated with poor clinical outcomes. In recent years, mutations in the IDH1 and IDH2 genes have been discovered across a range of malignancies, including AML, raising hope for effective targeted therapies. An intriguing aspect of IDH1/2-mutant malignancies is the aberrant production of the oncometabolite 2-hydroxyglutarate (2-HG), which likely play a pivotal oncogenic role. We recently reported that 2-HG is dramatically elevated in the sera, marrow and urine of IDH1/2-mutant AML patients, and that levels of this oncometabolite directly correlate with disease burden and therapeutic response. The discovery of IDH1/2 mutations and their impact on important proteomic and metabolic pathways has triggered intensive efforts to develop novel and targeted therapies. IDH1/2 inhibitors are currently under early phase clinical investigation, with promising suggestion of efficacy. Other therapeutic approaches under preclinical and clinical investigation in this population include DNA methyltransferase inhibitors and agents that target glutamine metabolism through inhibition of glutaminase or depletion of serum glutamine by asparaginase products.
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital, Harvard Medical School, Department of Hematology and Medical Oncology, Boston, MA.
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Department of Hematology and Medical Oncology, Boston, MA
| | - Rawan Faramand
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD
| | - Ashkan Emadi
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD.
| |
Collapse
|
11
|
Chien WW, Le Beux C, Rachinel N, Julien M, Lacroix CE, Allas S, Sahakian P, Cornut-Thibaut A, Lionnard L, Kucharczak J, Aouacheria A, Abribat T, Salles G. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 2015; 5:8068. [PMID: 25626693 PMCID: PMC5389037 DOI: 10.1038/srep08068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 12/02/2022] Open
Abstract
Bacterial L-asparaginase (ASNase), hydrolyzing L-asparagine (Asn), is an important drug for treating patients with acute lymphoblastic leukaemia (ALL) and natural killer (NK) cell lymphoma. Although different native or pegylated ASNase-based chemotherapy are efficient, disease relapse is frequently observed, especially in adult patients. The neo-synthesis of Asn by asparagine synthetase (AsnS) following ASNase treatment, which involves the amino acid response and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways, is believed to be the basis of ASNase-resistance mechanisms. However, AsnS expression has not emerged as an accurate predictive factor for ASNase susceptibility. The aim of this study was to identify possible ASNase sensitivity/resistance-related genes or pathways using a new asparaginase, namely a pegylated r-crisantaspase, with a focus on classic Asn-compensatory responses and cell death under conditions of Asn/L-glutamine limitation. We show that, for B-ALL cell lines, changes in the expression of apoptosis-regulatory genes (especially NFκB-related genes) are associated with ASNase susceptibility. The response of malignant NK cell lines to ASNase may depend on Asn-compensatory mechanisms and other cellular processes such as cleavage of BCL2A1, a prosurvival member of the Bcl-2 protein family. These results suggest that according to cellular context, factors other than AsnS can influence ASNase susceptibility.
Collapse
Affiliation(s)
- Wei-Wen Chien
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Céline Le Beux
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Nicolas Rachinel
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Michel Julien
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Claire-Emmanuelle Lacroix
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Soraya Allas
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Pierre Sahakian
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Aurélie Cornut-Thibaut
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Loïc Lionnard
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Jérôme Kucharczak
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Abdel Aouacheria
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Thierry Abribat
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Gilles Salles
- 1] Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE [2] Hospices Civils de Lyon, Service d'Hématologie, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, FRANCE
| |
Collapse
|
12
|
Bobrovnikova-Marjon E, Hurov JB. Targeting metabolic changes in cancer: novel therapeutic approaches. Annu Rev Med 2014; 65:157-70. [PMID: 24422570 DOI: 10.1146/annurev-med-092012-112344] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic strategies designed to target cancer metabolism are an area of intense research. Antimetabolites, first used to treat patients in the early twentieth century, served as an early proof of concept for such therapies. We highlight strategies that attempt to improve on the anti-metabolite approach as well as new metabolic drug targets. Some of these targets have the advantage of a strong genetic anchor to drive patient selection (isocitrate dehydrogenase 1/2, Enolase 2). Additional approaches described here derive from hypothesis-driven and systems biology efforts designed to exploit tumor cell metabolic dependencies (fatty acid oxidation, nicotinamide adenine dinucleotide synthesis, glutamine biology).
Collapse
|
13
|
DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. CHEMISTRY & BIOLOGY 2014; 21:1143-61. [PMID: 25237859 DOI: 10.1016/j.chembiol.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.
Collapse
Affiliation(s)
- Byron DeLaBarre
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Jonathan Hurov
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | | | - Stuart Murray
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Chien WW, Allas S, Rachinel N, Sahakian P, Julien M, Le Beux C, Lacroix CE, Abribat T, Salles G. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase. Invest New Drugs 2014; 32:795-805. [DOI: 10.1007/s10637-014-0102-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
|
15
|
Emadi A, Zokaee H, Sausville EA. Asparaginase in the treatment of non-ALL hematologic malignancies. Cancer Chemother Pharmacol 2014; 73:875-83. [PMID: 24515335 DOI: 10.1007/s00280-014-2402-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Asparaginases are among the most effective agents against acute lymphoblastic leukemia (ALL) and are Food and Drug Administration-approved for the treatment of pediatric and adult ALL. However, the efficacy of these drugs for the treatment of other hematologic malignancies particularly acute myeloid leukemia is not well established. The mechanism of action of asparaginases has thought to be related to a swift and sustained reduction in serum L-asparagine, which is required for rapid proliferation of metabolically demanding leukemic cells. However, asparagine depletion alone appears not to be sufficient for effective cytotoxic activity of asparaginase against leukemia cells, because glutamine can rescue asparagine-deprived cells by regeneration of asparagine via a transamidation chemical reaction. For this reason, glutamine reduction is also necessary for full anti-leukemic activity of asparaginase. Indeed, both Escherichia coli and Erwinia chrysanthemi asparaginases possess glutaminase enzymatic activity, and their administrations have shown to reduce serum glutamine level by deamidating glutamine to glutamate and ammonia. Emerging data have provided evidence that several types of neoplastic cells require glutamine for the synthesis of proteins, nucleic acids, and lipids. This fundamental role of glutamine and its metabolic pathways for growth and proliferation of individual malignant cells may identify a special group of patients whose solid or hematologic neoplasms may benefit significantly from interruption of glutamine metabolism. To this end, asparaginase products deserve a second look particularly in non-ALL malignant blood disorders. Here, we review mechanisms of anti-tumor activity of asparaginase focusing on importance of glutamine reduction, pharmacology of asparaginase products, in vitro activities as well as clinical experience of incorporating asparaginase in therapeutic regimens for non-ALL hematologic malignancies.
Collapse
Affiliation(s)
- Ashkan Emadi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, S9D04C, Baltimore, MD, 21201, USA,
| | | | | |
Collapse
|
16
|
Siritapetawee J, Thumanu K, Sojikul P, Thammasirirak S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:907-12. [PMID: 22579962 DOI: 10.1016/j.bbapap.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022]
Abstract
A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | | | | | | |
Collapse
|