1
|
Alhwoaimel NA, Alqahtani BA, Alhowimel AS, Alshehri MM, Alhelal AK, Al-Assaf LG, Alenazi AM. Barriers and Facilitators of Using Standardized Outcome Measures in Stroke Rehabilitation in Saudi Arabia: A Cross-Sectional Study of Practice Among Neurophysiotherapists. Risk Manag Healthc Policy 2024; 17:2319-2329. [PMID: 39359933 PMCID: PMC11446603 DOI: 10.2147/rmhp.s466602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Background Clinical guidelines emphasize the use of standardized outcome measures (SOMs) in post-stroke rehabilitation. However, the extent of SOM utilization among physiotherapists in this context in Saudi Arabia remains unclear. Aim 1) assess the current use of SOMs by physiotherapists involved in stroke rehabilitation in Saudi Arabia and 2) identify facilitators and barriers influencing the use of SOMs. Methods An online survey was administered using a three-section questionnaire designed for this study. The first section collected demographic data, the second evaluated the use of SOMs recommended by the American Physical Therapy Association, and the third explored factors facilitating or hindering SOM use in clinical practice. Only highly recommended outcome measures capturing the three levels of the International Classification of Functioning, and Disability (ICF) model were considered: body structure and function, activities, and participation. Poisson regression analysis was used to investigate the association between SOMs utilization and educational level, work experience, type of work facility, and the number of patients treated per week. Results A total of 138 physiotherapists responded. Most participants (98.5%) used at least one outcome measure in clinical practice. Regression analysis showed that number of strokes treated per week and facility type were associated with the likelihood of using higher number of SOMs. Physiotherapists managing more than 10 stroke patients per week and working in private sector had significantly higher odds of using a greater number of SOMs. The most pronounced barriers were time restrictions and limited resources. Conclusion Physiotherapists working with stroke patients in Saudi Arabia demonstrate a high awareness and positive attitude toward SOM utilization. Addressing barriers such as time management and resource allocation is crucial to enhancing SOM integration in clinical practice. Clinical Rehabilitation Impact Organizational support in terms of adequate time and resources is needed to enhance the use of SOMs among physiotherapists.
Collapse
Affiliation(s)
- Norah A Alhwoaimel
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Bader A Alqahtani
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Ahmed S Alhowimel
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mohammed M Alshehri
- Department of Physical Therapy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Afrah K Alhelal
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Lujain G Al-Assaf
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Aqeel M Alenazi
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1560-1563. [PMID: 28268625 DOI: 10.1109/embc.2016.7591009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
One of the recent trends in gait rehabilitation is to incorporate bio-signals, such as electromyography (EMG) or electroencephalography (EEG), for facilitating neuroplasticity, i.e. top-down approach. In this study, we investigated decoding stroke patients' gait intention through a wireless EEG system. To overcome patient-specific EEG patterns due to impaired cerebral cortices, common spatial patterns (CSP) was employed. We demonstrated that CSP filter can be used to maximize the EEG signal variance-ratio of gait and standing conditions. Finally, linear discriminant analysis (LDA) classification was conducted, whereby the average accuracy of 73.2% and the average delay of 0.13 s were achieved for 3 chronic stroke patients. Additionally, we also found out that the inverse CSP matrix topography of stroke patients' EEG showed good agreement with the patients' paretic side.
Collapse
|
4
|
Philips GR, Daly JJ, Príncipe JC. Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery. J Neuroeng Rehabil 2017; 14:67. [PMID: 28683745 PMCID: PMC5501348 DOI: 10.1186/s12984-017-0277-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Biomarkers derived from neural activity of the brain present a vital tool for the prediction and evaluation of post-stroke motor recovery, as well as for real-time biofeedback opportunities. METHODS In order to encapsulate recovery-related reorganization of brain networks into such biomarkers, we have utilized the generalized measure of association (GMA) and graph analyses, which include global and local efficiency, as well as hemispheric interdensity and intradensity. These methods were applied to electroencephalogram (EEG) data recorded during a study of 30 stroke survivors (21 male, mean age 57.9 years, mean stroke duration 22.4 months) undergoing 12 weeks of intensive therapeutic intervention. RESULTS We observed that decreases of the intradensity of the unaffected hemisphere are correlated (r s =-0.46;p<0.05) with functional recovery, as measured by the upper-extremity portion of the Fugl-Meyer Assessment (FMUE). In addition, high initial values of local efficiency predict greater improvement in FMUE (R 2=0.16;p<0.05). In a subset of 17 subjects possessing lesions of the cerebral cortex, reductions of global and local efficiency, as well as the intradensity of the unaffected hemisphere are found to be associated with functional improvement (r s =-0.60,-0.66,-0.75;p<0.05). Within the same subgroup, high initial values of global and local efficiency, are predictive of improved recovery (R 2=0.24,0.25;p<0.05). All significant findings were specific to the 12.5-25 Hz band. CONCLUSIONS These topological measures show promise for prognosis and evaluation of therapeutic outcomes, as well as potential application to BCI-enabled biofeedback.
Collapse
Affiliation(s)
- Gavin R. Philips
- Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| | - Janis J. Daly
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Malcolm Randall VA Medical Center, Gainesville, Florida, USA
| | - José C. Príncipe
- Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Trujillo P, Mastropietro A, Scano A, Chiavenna A, Mrakic-Sposta S, Caimmi M, Molteni F, Rizzo G. Quantitative EEG for Predicting Upper Limb Motor Recovery in Chronic Stroke Robot-Assisted Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1058-1067. [DOI: 10.1109/tnsre.2017.2678161] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|