1
|
Baburamani AA, Vontell RT, Uus A, Pietsch M, Patkee PA, Wyatt-Ashmead J, Chin-Smith EC, Supramaniam VG, Donald Tournier J, Deprez M, Rutherford MA. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol Commun 2020; 8:141. [PMID: 32819430 PMCID: PMC7441567 DOI: 10.1186/s40478-020-01015-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS) occurs with triplication of human chromosome 21 and is associated with deviations in cortical development evidenced by simplified gyral appearance and reduced cortical surface area. Radial glia are neuronal and glial progenitors that also create a scaffolding structure essential for migrating neurons to reach cortical targets and therefore play a critical role in cortical development. The aim of this study was to characterise radial glial expression pattern and morphology in the frontal lobe of the developing human fetal brain with DS and age-matched controls. Secondly, we investigated whether microstructural information from in vivo magnetic resonance imaging (MRI) could reflect histological findings from human brain tissue samples. Immunohistochemistry was performed on paraffin-embedded human post-mortem brain tissue from nine fetuses and neonates with DS (15-39 gestational weeks (GW)) and nine euploid age-matched brains (18-39 GW). Radial glia markers CRYAB, HOPX, SOX2, GFAP and Vimentin were assessed in the Ventricular Zone, Subventricular Zone and Intermediate Zone. In vivo diffusion MRI was used to assess microstructure in these regions in one DS (21 GW) and one control (22 GW) fetal brain. We found a significant reduction in radial glial progenitor SOX2 and subtle deviations in radial glia expression (GFAP and Vimentin) prior to 24 GW in DS. In vivo, fetal MRI demonstrates underlying radial projections consistent with immunohistopathology. Radial glial alterations may contribute to the subsequent simplified gyral patterns and decreased cortical volumes observed in the DS brain. Recent advances in fetal MRI acquisition and analysis could provide non-invasive imaging-based biomarkers of early developmental deviations.
Collapse
Affiliation(s)
- Ana A. Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Regina T. Vontell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- University of Miami Brain Endowment Bank, Miami, FL 33136 USA
| | - Alena Uus
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Prachi A. Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Jo Wyatt-Ashmead
- Neuropathology and Pediatric-Perinatal Pathology Service [NaPPPS], Holly Springs, MS 38635 USA
| | - Evonne C. Chin-Smith
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Veena G. Supramaniam
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - J. Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| |
Collapse
|
2
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Sarnat HB, Scantlebury MH. Novel Inflammatory Neuropathology in Immature Brain: (1) Fetal Tuberous Sclerosis, (2) Febrile Seizures, (3) α-B-crystallin, and (4) Role of Astrocytes. Semin Pediatr Neurol 2017; 24:152-160. [PMID: 29103422 DOI: 10.1016/j.spen.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Though the term "inflammation" is traditionally defined as proliferation or infiltration of lymphatic cells of the lymphatic immune system and macrophages or as immunoreactive proteins including cytokines, interleukins and major histocompatibility complexes, recently recognized reactions to tissue injury also are inflammation, often occurring in the central nervous system in conditions where they previously were not anticipated and where they may play a role in both pathogenesis and repair. We highlight 4 such novel inflammatory conditions revealed by neuropathologic studies: (1) inflammatory markers and cells in the brain of human fetuses with tuberous sclerosis complex and perhaps other disorders of the mechanistic target of rapamycin genetic or metabolic pathway, (2) inflammatory markers in the brain related to febrile seizures of infancy and early childhood, (3) heat-shock protein upregulation in glial cells and neurons at sites of chronic epileptic foci, and (4) the emerging role of astrocytes in the presence of and participation in inflammation. Novel evidence shows that cerebral inflammation plays a role in some genetic diseases as early as midgestation and thus is not always acquired postnatally or in adult life.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Morris H Scantlebury
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
4
|
C-terminally truncated form of αB-crystallin is associated with IDH1 R132H mutation in anaplastic astrocytoma. J Neurooncol 2014; 117:53-65. [PMID: 24473683 DOI: 10.1007/s11060-014-1371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Malignant gliomas are the most common human primary brain tumors. Point mutation of amino acid arginine 132 to histidine (R132H) in the IDH1 protein leads to an enzymatic gain-of-function and is thought to promote gliomagenesis. Little is known about the downstream effects of the IDH1 mutation on protein expression and how and whether changes in protein expression are involved in tumor formation or propagation. In the current study, we used 2D DIGE (difference gel electrophoresis) and mass spectrometry to analyze differences in protein expression between IDH1(R132H) mutant and wild type anaplastic (grade III) astrocytoma from human brain cancer tissues. We show that expression levels of many proteins are altered in IDH1(R132H) mutant anaplastic astrocytoma. Some of the most over-expressed proteins in the mutants include several forms of αB-crystallin, a small heat-shock and anti-apoptotic protein. αB-crystallin proteins are elevated up to 22-fold in IDH1(R132H) mutant tumors, and αB-crystallin expression appears to be controlled at the post-translational level. We identified the most abundant form of αB-crystallin as a low molecular weight species that is C-terminally truncated. We also found that overexpression of αB-crystallin can be induced by transfecting U251 human glioblastoma cell lines with the IDH1(R132H) mutation. In conclusion, the association of a C-terminally truncated form of αB-crystallin protein with the IDH1(R132H) mutation is a novel finding that could impact apoptosis and stress response in IDH1 mutant glioma.
Collapse
|
5
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|