1
|
Berciano MT, Gatius A, Puente-Bedia A, Rufino-Gómez A, Tarabal O, Rodríguez-Rey JC, Calderó J, Lafarga M, Tapia O. SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:12415. [PMID: 39596480 PMCID: PMC11595111 DOI: 10.3390/ijms252212415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation-contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease.
Collapse
Affiliation(s)
- María T. Berciano
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Alaó Gatius
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Alba Puente-Bedia
- Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain;
| | - Alexis Rufino-Gómez
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| | - Olga Tarabal
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - José C. Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Jordi Calderó
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Miguel Lafarga
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, 39011 Santander, Spain
| | - Olga Tapia
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| |
Collapse
|
2
|
Govoni A, Ricci G, Bonanno S, Bello L, Magri F, Meneri M, Torri F, Caponnetto C, Passamano L, Grandis M, Trojsi F, Cerri F, Gadaleta G, Capece G, Caumo L, Tanel R, Saccani E, Vacchiano V, Sorarù G, D'Errico E, Tramacere I, Bortolani S, Rolle E, Gellera C, Zanin R, Silvestrini M, Politano L, Schenone A, Previtali SC, Berardinelli A, Turri M, Verriello L, Coccia M, Mantegazza R, Liguori R, Filosto M, Maioli MA, Simone IL, Mongini T, Corti S, Manca ML, Pegoraro E, Siciliano G, Comi GP, Maggi L. Six-minute walk test as outcome measure of fatigability in adults with spinal muscular atrophy treated with nusinersen. Muscle Nerve 2024; 70:816-823. [PMID: 39096012 DOI: 10.1002/mus.28225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION/AIMS Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.
Collapse
Affiliation(s)
- Alessandra Govoni
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Bello
- Department of Neurosciences, Myology Institute, University of Padua, Padova, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milano, Milan, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Luigia Passamano
- Cardiomyology and Medical Genetics Unit, Luigi Vanvitelli Campania University, Naples, Italy
| | - Marina Grandis
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli Scuola di Medicina e Chirurgia, Naples, Italy
| | - Federica Cerri
- Division of Neuroscience, Institute of Experimental Neurology (InSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Gadaleta
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Giuliana Capece
- Department of Neurosciences, Myology Institute, University of Padua, Padova, Italy
| | - Luca Caumo
- Department of Neurosciences, Myology Institute, University of Padua, Padova, Italy
| | - Raffaella Tanel
- NeMO Clinical Centre Villa Rosa Hospital/Department of Neurology, Santa Chiara Hospital, Trento, Italy
| | - Elena Saccani
- Specialistic Medicine Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Myology Institute, University of Padua, Padova, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Translational Biomedicine and Neurosciences-DiBraiN-AOU Policlinico Consorziale Bari, Bari, Italy
- ERN-NMD center for Neuromuscular disease and Unit of Neurology, Azienda Ospedaliero Universitaria Policlinico, Bari, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Bortolani
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Enrica Rolle
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neuroncologico Carlo Besta, Milan, Italy
| | - Riccardo Zanin
- Developmental Neurology, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Facoltà di Medicina e Chirurgia, Ancona, Italy
- Department of Neurological Sciences, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics Unit, Luigi Vanvitelli Campania University, Naples, Italy
| | - Angelo Schenone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, Institute of Experimental Neurology (InSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mara Turri
- Department of Neurology/Stroke Unit, Bolzano Hospital, Bolzano, Italy
| | - Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Michela Coccia
- Department of Neurological Sciences, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Isabella Laura Simone
- Neurology Unit, Department of Translational Biomedicine and Neurosciences-DiBraiN-AOU Policlinico Consorziale Bari, Bari, Italy
- ERN-NMD center for Neuromuscular disease and Unit of Neurology, Azienda Ospedaliero Universitaria Policlinico, Bari, Italy
| | - Tiziana Mongini
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Stefania Corti
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milano, Milan, Italy
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Mathematics, University of Pisa, Pisa, Italy
| | - Elena Pegoraro
- Department of Neurosciences, Myology Institute, University of Padua, Padova, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milano, Milan, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Tapken I, Detering NT, Claus P. What could be the function of the spinal muscular atrophy-causing protein SMN in macrophages? Front Immunol 2024; 15:1375428. [PMID: 38863697 PMCID: PMC11165114 DOI: 10.3389/fimmu.2024.1375428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact beyond the nervous system. The central protein implicated in SMA, Survival Motor Neuron (SMN) protein, is ubiquitously expressed and functions in fundamental processes such as alternative splicing, translation, cytoskeletal dynamics and signaling. These processes are relevant for all cellular systems, including cells of the immune system such as macrophages. Macrophages are capable of modulating their splicing, cytoskeleton and expression profile in order to fulfil their role in tissue homeostasis and defense. However, less is known about impairment or dysfunction of macrophages lacking SMN and the subsequent impact on the immune system of SMA patients. We aimed to review the potential overlaps between SMN functions and macrophage mechanisms highlighting the need for future research, as well as the current state of research addressing the role of macrophages in SMA.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Nora T. Detering
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
4
|
Kataoka M, Sahashi K, Tsujikawa K, Takeda JI, Hirunagi T, Iida M, Katsunoa M. Dysregulation of Aldh1a2 underlies motor neuron degeneration in spinal muscular atrophy. Neurosci Res 2023:S0168-0102(23)00090-1. [PMID: 37146794 DOI: 10.1016/j.neures.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.
Collapse
Affiliation(s)
- Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan.
| | - Koyo Tsujikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Tomoki Hirunagi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Masahisa Katsunoa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan; Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan.
| |
Collapse
|
5
|
DOK7 Promotes NMJ Regeneration After Nerve Injury. Mol Neurobiol 2023; 60:1453-1464. [PMID: 36464749 DOI: 10.1007/s12035-022-03143-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 12/11/2022]
Abstract
Motor function recovery from injury requires the regeneration of not only muscle fibers, but also the neuromuscular junction-the synapse between motor nerve terminals and muscle fibers. However, unlike muscle regeneration which has been extensively studied, little is known about the molecular mechanisms of NMJ regeneration. Recognizing the critical role of agrin-LRP4-MuSK signaling in NMJ formation and maintenance, we investigated whether increasing MuSK activity promotes NMJ regeneration. To this end, we evaluated the effect of DOK7, a protein that stimulates MuSK, on NMJ regeneration. Reinnervation, AChR cluster density, and endplate area were improved, and fragmentation was reduced in the AAV9-DOK7-GFP-injected muscles compared with muscles injected with AAV9-GFP. These results demonstrated expedited NMJ regeneration associated with increased DOK7 expression and support the hypothesis that increasing agrin signaling benefits motor function recovery after injury. Our findings propose a potentially new therapeutic strategy for functional recovery after muscle and nerve injury, i.e., promoting NMJ regeneration by increasing agrin signaling.
Collapse
|
6
|
Woschitz V, Mei I, Hedlund E, Murray LM. Mouse models of SMA show divergent patterns of neuronal vulnerability and resilience. Skelet Muscle 2022; 12:22. [PMID: 36089582 PMCID: PMC9465884 DOI: 10.1186/s13395-022-00305-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is a form of motor neuron disease affecting primarily children characterised by the loss of lower motor neurons (MNs). Breakdown of the neuromuscular junctions (NMJs) is an early pathological event in SMA. However, not all motor neurons are equally vulnerable, with some populations being lost early in the disease while others remain intact at the disease end-stage. A thorough understanding of the basis of this selective vulnerability will give critical insight into the factors which prohibit pathology in certain motor neuron populations and consequently help identify novel neuroprotective strategies. Methods To retrieve a comprehensive understanding of motor neuron susceptibility in SMA, we mapped NMJ pathology in 20 muscles from the Smn2B/- SMA mouse model and cross-compared these data with published data from three other commonly used mouse models. To gain insight into the molecular mechanisms regulating selective resilience and vulnerability, we analysed published RNA sequencing data acquired from differentially vulnerable motor neurons from two different SMA mouse models. Results In the Smn2B/- mouse model of SMA, we identified substantial NMJ loss in the muscles from the core, neck, proximal hind limbs and proximal forelimbs, with a marked reduction in denervation in the distal limbs and head. Motor neuron cell body loss was greater at T5 and T11 compared with L5. We subsequently show that although widespread denervation is observed in each SMA mouse model (with the notable exception of the Taiwanese model), all models have a distinct pattern of selective vulnerability. A comparison of previously published data sets reveals novel transcripts upregulated with a disease in selectively resistant motor neurons, including genes involved in axonal transport, RNA processing and mitochondrial bioenergetics. Conclusions Our work demonstrates that the Smn2B/- mouse model shows a pattern of selective vulnerability which bears resemblance to the regional pathology observed in SMA patients. We found drastic differences in patterns of selective vulnerability across the four SMA mouse models, which is critical to consider during experimental design. We also identified transcript groups that potentially contribute to the protection of certain motor neurons in SMA mouse models. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00305-9.
Collapse
|
7
|
Premature delivery in the domestic sow in response to in utero delivery of AAV9 to fetal piglets. Gene Ther 2022; 29:513-519. [PMID: 34803165 DOI: 10.1038/s41434-021-00305-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023]
Abstract
Numerous pediatric neurogenetic diseases may be optimally treated by in utero gene therapy (IUGT); but advancing such treatments requires animal models that recapitulate developmental physiology relevant to humans. One disease that could benefit from IUGT is the autosomal recessive motor neuron disease spinal muscular atrophy (SMA). Current SMA gene-targeting therapeutics are more efficacious when delivered shortly after birth, however postnatal treatment is rarely curative in severely affected patients. IUGT may provide benefit for SMA patients. In previous studies, we developed a large animal porcine model of SMA using AAV9 to deliver a short hairpin RNA (shRNA) directed at porcine survival motor neuron gene (Smn) mRNA on postnatal day 5. Here, we aimed to model developmental features of SMA in fetal piglets and to demonstrate the feasibility of prenatal gene therapy by delivering AAV9-shSmn in utero. Saline (sham), AAV9-GFP, or AAV9-shSmn was injected under direct ultrasound guidance between gestational ages 77-110 days. We developed an ultrasound-guided technique to deliver virus under direct visualization to mimic the clinic setting. Saline injection was tolerated and resulted in viable, healthy piglets. Litter rejection occurred within seven days of AAV9 injection for all other rounds. Our real-world experience of in utero viral delivery followed by AAV9-related fetal rejection suggests that the domestic sow may not be a viable model system for preclinical in utero AAV9 gene therapy studies.
Collapse
|
8
|
Chehade L, Deguise MO, De Repentigny Y, Yaworski R, Beauvais A, Gagnon S, Hensel N, Kothary R. Suppression of the necroptotic cell death pathways improves survival in Smn2B/− mice. Front Cell Neurosci 2022; 16:972029. [PMID: 35990890 PMCID: PMC9381707 DOI: 10.3389/fncel.2022.972029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neuromuscular disease caused by low levels of the Survival Motor Neuron (SMN) protein. Motor neuron degeneration is the central hallmark of the disease. However, the SMN protein is ubiquitously expressed and depletion of the protein in peripheral tissues results in intrinsic disease manifestations, including muscle defects, independent of neurodegeneration. The approved SMN-restoring therapies have led to remarkable clinical improvements in SMA patients. Yet, the presence of a significant number of non-responders stresses the need for complementary therapeutic strategies targeting processes which do not rely solely on restoring SMN. Dysregulated cell death pathways are candidates for SMN-independent pathomechanisms in SMA. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 have been widely recognized as critical therapeutic targets of necroptosis, an important form of programmed cell death. In addition, Caspase-1 plays a fundamental role in inflammation and cell death. In this study, we evaluate the role of necroptosis, particularly RIPK3 and Caspase-1, in the Smn2B/− mouse model of SMA. We have generated a triple mutant (TKO), the Smn2B/−; Ripk3−/−; Casp1−/− mouse. TKO mice displayed a robust increase in survival and improved motor function compared to Smn2B/− mice. While there was no protection against motor neuron loss or neuromuscular junction pathology, larger muscle fibers were observed in TKO mice compared to Smn2B/− mice. Our study shows that necroptosis modulates survival, motor behavior and muscle fiber size independent of SMN levels and independent of neurodegeneration. Thus, small-molecule inhibitors of necroptosis as a combinatorial approach together with SMN-restoring drugs could be a future strategy for the treatment of SMA.
Collapse
Affiliation(s)
- Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Niko Hensel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Rashmi Kothary
| |
Collapse
|
9
|
Bannow LI, Bonaterra GA, Bertoune M, Maus S, Schulz R, Weissmann N, Kraut S, Kinscherf R, Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skelet Muscle 2022; 12:6. [PMID: 35151349 PMCID: PMC8841105 DOI: 10.1186/s13395-022-00288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles. Methods Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS−/−) to evaluate whether iNOS is protective or risk-mediating. Results In WT soleus muscle, CIH vs. NOX reduced NMJ size (− 37.0%, p < 0.001) and length (− 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (− 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS−/− similarly decreased NMJ area and length with NOX (− 55%, p < 0.001 and − 33%, p < 0.05, respectively) or with CIH (− 37%, p < 0.05 and − 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS−/− vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS−/− massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS−/− were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH. Conclusion CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS−/− at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00288-7.
Collapse
|
10
|
Ravel-Chapuis A, Haghandish A, Daneshvar N, Jasmin BJ, Côté J. A novel CARM1-HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Hum Mol Genet 2021; 31:1453-1470. [PMID: 34791230 DOI: 10.1093/hmg/ddab333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle has also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amir Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nasibeh Daneshvar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Activation of Muscle-Specific Kinase (MuSK) Reduces Neuromuscular Defects in the Delta7 Mouse Model of Spinal Muscular Atrophy (SMA). Int J Mol Sci 2021; 22:ijms22158015. [PMID: 34360794 PMCID: PMC8348537 DOI: 10.3390/ijms22158015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.
Collapse
|
13
|
Rios R, Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Mol Cell Neurosci 2021; 111:103590. [PMID: 33422671 DOI: 10.1016/j.mcn.2021.103590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.
Collapse
Affiliation(s)
- Rachel Rios
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
14
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
15
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
16
|
Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK. A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 2019; 8:47372. [PMID: 31318331 PMCID: PMC6682402 DOI: 10.7554/elife.47372] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Drosophila Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Han Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
17
|
Eshraghi M, Gombar R, De Repentigny Y, Vacratsis PO, Kothary R. Pathologic Alterations in the Proteome of Synaptosomes from a Mouse Model of Spinal Muscular Atrophy. J Proteome Res 2019; 18:3042-3051. [PMID: 31262178 DOI: 10.1021/acs.jproteome.9b00159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal muscular atrophy (SMA) is a human genetic disorder characterized by muscle weakness, muscle atrophy, and death of motor neurons. SMA is caused by mutations or deletions in a gene called survival motor neuron 1 (SMN1). SMN1 is a housekeeping gene, but the most prominent pathologies in SMA are atrophy of myofibers and death of motor neurons. Further, degeneration of neuromuscular junctions, of synapses, and of axonal regions are features of SMA disease. Here, we have investigated the proteome dynamics of central synapses in P14 Smn2B/- mice, a model of SMA. Label-free quantitative proteomics on isolated synaptosomes from spinal cords of these animals identified 2030 protein groups. Statistical data analysis revealed 65 specific alterations in the proteome of the central synapses at the early onset stage of disease. Functional analysis of the dysregulated proteins indicated a significant enrichment of proteins associated with mitochondrial dynamics, cholesterol biogenesis, and protein clearance. These pathways represent potential targets for therapy development with the goal of providing stability to the central synapses, thereby preserving neuronal integrity in the context of SMA disease. Data are available via ProteomeXchange with identifier PXD012850.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Regenerative Medicine Program , Ottawa Hospital Research Institute , Ottawa , Ontario K1H 8L6 , Canada.,University of Ottawa Centre for Neuromuscular Disease , Ottawa , Ontario K1H 8M5 , Canada
| | - Robert Gombar
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , Ontario N9B 3P4 , Canada
| | - Yves De Repentigny
- Regenerative Medicine Program , Ottawa Hospital Research Institute , Ottawa , Ontario K1H 8L6 , Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , Ontario N9B 3P4 , Canada
| | - Rashmi Kothary
- Regenerative Medicine Program , Ottawa Hospital Research Institute , Ottawa , Ontario K1H 8L6 , Canada.,University of Ottawa Centre for Neuromuscular Disease , Ottawa , Ontario K1H 8M5 , Canada
| |
Collapse
|
18
|
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75:3877-3894. [PMID: 29872871 PMCID: PMC6182345 DOI: 10.1007/s00018-018-2849-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin-proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Cerveró C, Blasco A, Tarabal O, Casanovas A, Piedrafita L, Navarro X, Esquerda JE, Calderó J. Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/- Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2018; 77:577-597. [PMID: 29767748 DOI: 10.1093/jnen/nly033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration. Here, we investigated whether a chronic treatment with the Sig1R agonist PRE-084 was able to exert beneficial effects on SMA. We used a model of intermediate SMA, the Smn2B/- mouse, in which we performed a detailed characterization of the histopathological changes that occur throughout the disease. We report that Smn2B/- mice exhibited qualitative differences in major alterations found in mouse models of severe SMA: Smn2B/- animals showed more prominent MN degeneration, early motor axon alterations, marked changes in sensory neurons, and later MN deafferentation that correlated with conspicuous reactive gliosis and altered neuroinflammatory M1/M2 microglial balance. PRE-084 attenuated reactive gliosis, mitigated M1/M2 imbalance, and prevented MN deafferentation in Smn2B/- mice. These effects were also observed in a severe SMA model, the SMNΔ7 mouse. However, the prevention of gliosis and MN deafferentation promoted by PRE-084 were not accompanied by any improvements in clinical outcome or other major pathological changes found in SMA mice.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| |
Collapse
|
20
|
Pratt SJP, Iyer SR, Shah SB, Lovering RM. Imaging Analysis of the Neuromuscular Junction in Dystrophic Muscle. Methods Mol Biol 2018; 1687:57-72. [PMID: 29067656 DOI: 10.1007/978-1-4939-7374-3_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD), caused by the absence of the protein dystrophin, is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but there is little information to determine if damage from contraction-induced injury also occurs at or near the nerve terminal axon. Interestingly, both human patients and the mouse model for DMD (the mdx mouse) present fragmented neuromuscular junction (NMJ) morphology. Studies of mdx mice have revealed presynaptic and postsynaptic abnormalities, nerve terminal discontinuity, as well as increased susceptibility of the NMJ to contraction-induced injury with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyography. Focusing on the NMJ as a contributor to functional deficits in the muscle represents a paradigm shift from the more prevalent myocentric perspectives. Further studies are needed to determine the extent to which the nerve-muscle interaction is disrupted in DMD and the role of the NMJ in the dystrophic progression. This chapter lists the tools needed for nerve terminal and NMJ structural analysis using fluorescence imaging, and provides a step-by-step outline for how to stain, image, and analyze the NMJ in skeletal muscle, with specific attention to mdx muscle.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, 100 Penn St., AHB, Room 540, Baltimore, MD, 21201, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Research Division, Veterans Administration San Diego Healthcare System, San Diego, CA, 92121, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, 100 Penn St., AHB, Room 540, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
22
|
Deguise MO, De Repentigny Y, McFall E, Auclair N, Sad S, Kothary R. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum Mol Genet 2017; 26:801-819. [PMID: 28108555 PMCID: PMC5409095 DOI: 10.1093/hmg/ddw434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Nicole Auclair
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada, K1N 9B4
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
23
|
Shiga T, Uchida K, Chambers JK, Nakayama H. Immunohistochemical analysis of canine and feline muscle disorders using formalin-fixed, paraffin-embedded tissues. J Vet Diagn Invest 2017; 29:805-813. [PMID: 28599613 DOI: 10.1177/1040638717715287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histochemical techniques used in examination of muscle biopsies typically require frozen sections. Given that most of the specimens submitted to a veterinary laboratory for diagnosis are formalin-fixed, the choice of staining methods is limited. We aimed to further advance the diagnostic capabilities of pathologists presented with formalin-fixed muscle samples and to describe the differences in immunohistopathologic findings between neurogenic and myogenic muscle disorders. Based on hematoxylin and eosin staining, we defined in dogs the histologic lesions in 4 neurogenic disorders (degenerative myelopathy and polyneuropathy) and 2 myogenic disorders (dystrophin-deficient muscular dystrophy). In cats, we defined the lesions in 2 neurogenic disorders (lymphoma of nerve roots and spinal cords) and 1 myogenic disorder (laminin α2-deficient muscular dystrophy). Immunohistochemistry for slow and fast myosins revealed angular and group atrophy of type 1 and type 2 fibers in dogs and cats, and fiber type grouping in dogs. These immunohistopathologic findings were specific to neurogenic muscle disorders. Immunohistochemistry for nestin and myogenin revealed nestin-positive fibers and myogenin-positive nuclei in dogs and cats. They were not specific, but these fibers in myogenic disorders can be interpreted as regenerating fibers. The immunohistochemical method described herein appears to be useful for discriminating neurogenic and myogenic disorders in formalin-fixed, paraffin-embedded muscle tissue of dogs and cats.
Collapse
Affiliation(s)
- Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
24
|
Deguise M, Kothary R. New insights into SMA pathogenesis: immune dysfunction and neuroinflammation. Ann Clin Transl Neurol 2017; 4:522-530. [PMID: 28695153 PMCID: PMC5497530 DOI: 10.1002/acn3.423] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by motor neuron degeneration, although defects in multiple cell types and tissues have also been implicated. Three independent laboratories recently identified immune organ defects in SMA. We therefore propose a novel pathogenic mechanism contributory to SMA, resulting in higher susceptibility to infection and exacerbated disease progression caused by neuroinflammation. Overall, compromised immune function could significantly affect survival and quality of life of SMA patients. We highlight the recent findings in immune organ defects, their potential consequences on patients, our understanding of neuroinflammation in SMA, and new research hypotheses in SMA pathogenesis.
Collapse
Affiliation(s)
- Marc‐Olivier Deguise
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioK1H 8L6Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioK1H 8M5Canada
| | - Rashmi Kothary
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioK1H 8L6Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Department of MedicineUniversity of OttawaOttawaOntarioK1H 8M5Canada
| |
Collapse
|
25
|
Khairallah MT, Astroski J, Custer SK, Androphy EJ, Franklin CL, Lorson CL. SMN deficiency negatively impacts red pulp macrophages and spleen development in mouse models of spinal muscular atrophy. Hum Mol Genet 2017; 26:932-941. [PMID: 28062667 DOI: 10.1093/hmg/ddx008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease that is the leading genetic cause of infantile death. It is caused by a severe deficiency of the ubiquitously expressed Survival Motor Neuron (SMN) protein. SMA is characterized by α-lower motor neuron loss and muscle atrophy, however, there is a growing list of tissues impacted by a SMN deficiency beyond motor neurons. The non-neuronal defects are observed in the most severe Type I SMA patients and most of the widely used SMA mouse models, however, as effective therapeutics are developed, it is unclear whether additional symptoms will be uncovered in longer lived patients. Recently, the immune system and inflammation has been identified as a contributor to neurodegenerative diseases such as ALS. To determine whether the immune system is comprised in SMA, we analyzed the spleen and immunological components in SMA mice. In this report, we identify: a significant reduction in spleen size in multiple SMA mouse models and a pathological reduction in red pulp and extramedullary hematopoiesis. Additionally, red pulp macrophages, a discrete subset of yolk sac-derived macrophages, were found to be altered in SMA spleens even in pre-symptomatic post-natal day 2 animals. These cells, which are involved in iron metabolism and the phagocytosis of erythrocytes and blood-borne pathogens are significantly reduced prior to the development of the neurodegenerative hallmarks of SMA, implying a differential role of SMN in myeloid cell ontogeny. Collectively, these results demonstrate that SMN deficiency impacts spleen development and suggests a potential role for immunological development in SMA.
Collapse
Affiliation(s)
- Marie-Therese Khairallah
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jacob Astroski
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Christian L Lorson
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Thomson AK, Somers E, Powis RA, Shorrock HK, Murphy K, Swoboda KJ, Gillingwater TH, Parson SH. Survival of motor neurone protein is required for normal postnatal development of the spleen. J Anat 2016; 230:337-346. [PMID: 27726134 DOI: 10.1111/joa.12546] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
Spinal muscular atrophy (SMA), traditionally described as a predominantly childhood form of motor neurone disease, is the leading genetic cause of infant mortality. Although motor neurones are undoubtedly the primary affected cell type, the severe infantile form of SMA (Type I SMA) is now widely recognised to represent a multisystem disorder where a variety of organs and systems in the body are also affected. Here, we report that the spleen is disproportionately small in the 'Taiwanese' murine model of severe SMA (Smn-/- ;SMN2tg/0 ), correlated to low levels of cell proliferation and increased cell death. Spleen lacks its distinctive red appearance and presents with a degenerated capsule and a disorganised fibrotic architecture. Histologically distinct white pulp failed to form and this was reflected in an almost complete absence of B lymphocytes necessary for normal immune function. In addition, megakaryoctyes persisted in the red pulp. However, the vascular density remained unchanged in SMA spleen. Assessment of the spleen in SMA patients with the infantile form of the disease indicated a range of pathologies. We conclude that development of the spleen fails to occur normally in SMA mouse models and human patients. Thus, further analysis of immune function is likely to be required to fully understand the full extent of systemic disease pathology in SMA.
Collapse
Affiliation(s)
- Alison K Thomson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland.,Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland
| | - Eilidh Somers
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Kelley Murphy
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Simon H Parson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland.,Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland
| |
Collapse
|
27
|
Szunyogova E, Zhou H, Maxwell GK, Powis RA, Francesco M, Gillingwater TH, Parson SH. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep 2016; 6:34635. [PMID: 27698380 PMCID: PMC5048144 DOI: 10.1038/srep34635] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA.
Collapse
Affiliation(s)
- Eva Szunyogova
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Gillian K. Maxwell
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rachael A. Powis
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Muntoni Francesco
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Oliván S, Calvo AC, Rando A, Herrando-Grabulosa M, Manzano R, Zaragoza P, Tizzano EF, Aquilera J, Osta R. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy. Front Mol Neurosci 2016; 9:76. [PMID: 27605908 PMCID: PMC4995219 DOI: 10.3389/fnmol.2016.00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.
Collapse
Affiliation(s)
- Sara Oliván
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de ZaragozaZaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Grupo AMB, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de ZaragozaZaragoza, Spain
| | - Ana C Calvo
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Mireia Herrando-Grabulosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Eduardo F Tizzano
- Área de Genética Clínica y Molecular, Hospital Vall d'Hebron, Centros de Investigación Biomédica en Red Barcelona, Spain
| | - Jose Aquilera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| |
Collapse
|
29
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
30
|
Cerveró C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J. Chronic Treatment with the AMPK Agonist AICAR Prevents Skeletal Muscle Pathology but Fails to Improve Clinical Outcome in a Mouse Model of Severe Spinal Muscular Atrophy. Neurotherapeutics 2016; 13:198-216. [PMID: 26582176 PMCID: PMC4720671 DOI: 10.1007/s13311-015-0399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Neus Montull
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
31
|
Neve A, Trüb J, Saxena S, Schümperli D. Central and peripheral defects in motor units of the diaphragm of spinal muscular atrophy mice. Mol Cell Neurosci 2016; 70:30-41. [PMID: 26621405 DOI: 10.1016/j.mcn.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.
Collapse
Affiliation(s)
- Anuja Neve
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Judith Trüb
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Daniel Schümperli
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
32
|
YU YONGHUI, CHU WANLI, CHAI JIAKE, LI XIAO, LIU LINGYING, MA LI. Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 2015; 13:1470-4. [DOI: 10.3892/mmr.2015.4748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
|
33
|
Patitucci TN, Ebert AD. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons. Hum Mol Genet 2015; 25:514-23. [PMID: 26643950 DOI: 10.1093/hmg/ddv489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.
Collapse
Affiliation(s)
- Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| |
Collapse
|
34
|
Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D. Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol 2015; 11:1430-46. [PMID: 25692239 PMCID: PMC4601534 DOI: 10.1080/15476286.2014.996494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.
Collapse
Key Words
- ESE, exonic splicing enhancer
- FCS, fetal calf serum
- MN, motoneuron
- NMD, nonsense-mediated mRNA decay
- NMJ, neuromuscular junction, PCR
- RT, reverse transcription
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- Spinal Muscular Atrophy
- TcRβ, T-cell receptor β chain
- exon junction microarray
- hz, heterozygote, LCM
- laser capture microdissection
- major spliceosome
- minor spliceosome
- motoneurons
- neurodegerative disease
- polymerase chain reaction, qPCR
- real-time (quantitative) PCR
- sh, short hairpin
- snRNA, small nuclear ribonucleic acid
- snRNP assembly
- snRNP, small nuclear ribonucleoprotein
- splicing
- splicing regulators
Collapse
Affiliation(s)
- Qing Huo
- a Institute of Cell Biology ; University of Bern ; Bern , Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|
36
|
Murray LM, Beauvais A, Gibeault S, Courtney NL, Kothary R. Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy. Acta Neuropathol Commun 2015; 3:55. [PMID: 26374403 PMCID: PMC4570693 DOI: 10.1186/s40478-015-0231-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The term motor neuron disease encompasses a spectrum of disorders in which motor neurons are the lost. Importantly, while some motor neurons are lost early in disease and others remain intact at disease end-stage. This creates a valuable experimental paradigm to investigate the factors that regulate motor neuron vulnerability. Spinal muscular atrophy is a childhood motor neuron disease caused by mutations or deletions in the SMN1 gene. Here, we have performed transcriptional analysis on differentially vulnerable motor neurons from an intermediate mouse model of Spinal muscular atrophy at a presymptomatic time point. RESULTS We have characterised two differentially vulnerable populations, differing in the level neuromuscular junction loss. Transcriptional analysis on motor neuron cell bodies revealed that reduced Smn levels correlate with a reduction of transcripts associated with the ribosome, rRNA binding, ubiquitination and oxidative phosphorylation. Furthermore, P53 pathway activation precedes neuromuscular junction loss, suggesting that denervation may be a consequence, rather than a cause of motor neuron death in Spinal muscular atrophy. Finally, increased vulnerability correlates with a decrease in the positive regulation of DNA repair. CONCLUSIONS This study identifies pathways related to the function of Smn and associated with differential motor unit vulnerability, thus presenting a number of exciting targets for future therapeutic development.
Collapse
|
37
|
Pratt SJP, Valencia AP, Le GK, Shah SB, Lovering RM. Pre- and postsynaptic changes in the neuromuscular junction in dystrophic mice. Front Physiol 2015; 6:252. [PMID: 26441672 PMCID: PMC4563167 DOI: 10.3389/fphys.2015.00252] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated in mdx mice (murine model for DMD) significant morphologic alterations at the motor endplate of the neuromuscular junction (NMJ) and corresponding NMJ transmission failure after injury. Here we extend these initial observations at the motor endplate to gain insight into the pre- vs. postsynaptic morphology, as well as the subsynaptic nuclei in healthy (WT) vs. mdx mice. We quantified the discontinuity and branching of the terminal nerve in adult mice. We report mdx- and age-dependent changes for discontinuity and an increase in branching when compared to WT. To examine mdx- and age-dependent changes in the relative localization of pre- and postsynaptic structures, we calculated NMJ occupancy, defined as the ratio of the footprint occupied by presynaptic vesicles vs. that of the underlying motor endplate. The normally congruent coupling between presynaptic and postsynaptic morphology was altered in mdx mice, independent of age. Finally we found an almost two-fold increase in the number of nuclei and an increase in density (nuclei/area) underlying the NMJ. These outcomes suggest substantial remodeling of the NMJ during dystrophic progression. This remodeling reflects plasticity in both pre- and postsynaptic contributors to NMJ structure, and thus perhaps also NM transmission and muscle function.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Kinesiology, University of Maryland School of Public Health College Park, MD, USA
| | - Gloribel K Le
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
38
|
Rindt H, Feng Z, Mazzasette C, Glascock JJ, Valdivia D, Pyles N, Crawford TO, Swoboda KJ, Patitucci TN, Ebert AD, Sumner CJ, Ko CP, Lorson CL. Astrocytes influence the severity of spinal muscular atrophy. Hum Mol Genet 2015; 24:4094-102. [PMID: 25911676 DOI: 10.1093/hmg/ddv148] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 02/02/2023] Open
Abstract
Systemically low levels of survival motor neuron-1 (SMN1) protein cause spinal muscular atrophy (SMA). α-Motor neurons of the spinal cord are considered particularly vulnerable in this genetic disorder and their dysfunction and loss cause progressive muscle weakness, paralysis and eventually premature death of afflicted individuals. Historically, SMA was therefore considered a motor neuron-autonomous disease. However, depletion of SMN in motor neurons of normal mice elicited only a very mild phenotype. Conversely, restoration of SMN to motor neurons in an SMA mouse model had only modest effects on the SMA phenotype and survival. Collectively, these results suggested that additional cell types contribute to the pathogenesis of SMA, and understanding the non-autonomous requirements is crucial for developing effective therapies. Astrocytes are critical for regulating synapse formation and function as well as metabolic support for neurons. We hypothesized that astrocyte functions are disrupted in SMA, exacerbating disease progression. Using viral-based restoration of SMN specifically to astrocytes, survival in severe and intermediate SMA mice was observed. In addition, neuromuscular circuitry was improved. Astrogliosis was prominent in end-stage SMA mice and in post-mortem patient spinal cords. Increased expression of proinflammatory cytokines was partially normalized in treated mice, suggesting that astrocytes contribute to the pathogenesis of SMA.
Collapse
Affiliation(s)
- Hansjörg Rindt
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chiara Mazzasette
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacqueline J Glascock
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - David Valdivia
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Noah Pyles
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Thomas O Crawford
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn J Swoboda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA and
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Charlotte J Sumner
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA,
| |
Collapse
|
39
|
Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2015; 40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
40
|
Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000PRIME REPORTS 2015; 7:04. [PMID: 25705387 PMCID: PMC4311279 DOI: 10.12703/p7-04] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
Collapse
Affiliation(s)
- Daniel M Iascone
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Christopher E Henderson
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Justin C Lee
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
41
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, Onesto E, Messi E, Poletti A. ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 2014; 79:70-8. [PMID: 25451799 DOI: 10.1016/j.neuint.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Elisa Giorgetti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elisa Onesto
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy.
| |
Collapse
|
42
|
Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy. J Neuropathol Exp Neurol 2014; 73:519-35. [PMID: 24806302 DOI: 10.1097/nen.0000000000000074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Motoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses. We found that MNs underwent progressive degeneration in the course of SMA, with MN loss still occurring at late stages. Loss of afferent inputs to SMA MNs was detected at embryonic stages, long before MN death. Reactive microgliosis and astrogliosis were present in the spinal cord of diseased animals after the onset of MN loss. Ultrastructural observations indicate that dendrites and microglia phagocytose adjacent degenerating presynaptic terminals. Neuronal nitric oxide synthase was upregulated in SMNΔ7 MNs, and there was an increase in phosphorylated myosin light chain expression in synaptic afferents on MNs; these observations implicate nitric oxide in MN deafferentation and suggest that the RhoA/ROCK pathway is activated. Together, our observations suggest that the earliest change occurring in SMNΔ7 mice is the loss of excitatory glutamatergic synaptic inputs to MNs; reduced excitability may enhance their vulnerability to degeneration and death.
Collapse
|
43
|
Shi Y, Ivannikov MV, Walsh ME, Liu Y, Zhang Y, Jaramillo CA, Macleod GT, Van Remmen H. The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PLoS One 2014; 9:e100834. [PMID: 24971750 PMCID: PMC4074103 DOI: 10.1371/journal.pone.0100834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Elevated reactive oxygen species (ROS) production and ROS-dependent protein damage is a common observation in the pathogenesis of many muscle wasting disorders, including sarcopenia. However, the contribution of elevated ROS levels to –a breakdown in neuromuscular communication and muscle atrophy remains unknown. In this study, we examined a copper zinc superoxide dismutase [CuZnSOD (Sod1)] knockout mouse (Sod1−/−), a mouse model of elevated oxidative stress that exhibits accelerated loss of muscle mass, which recapitulates many phenotypes of sarcopenia as early as 5 months of age. We found that young adult Sod1−/− mice display a considerable reduction in hind limb skeletal muscle mass and strength when compared to age-matched wild-type mice. These changes are accompanied by gross alterations in neuromuscular junction (NMJ) morphology, including reduced occupancy of the motor endplates by axons, terminal sprouting and axon thinning and irregular swelling. Surprisingly however, the average density of acetylcholine receptors in endplates is preserved. Using in vivo electromyography and ex vivo electrophysiological studies of hind limb muscles in Sod1−/− mice, we found that motor axons innervating the extensor digitorum longus (EDL) and gastrocnemius muscles release fewer synaptic vesicles upon nerve stimulation. Recordings from individually identified EDL NMJs show that reductions in neurotransmitter release are apparent in the Sod1−/− mice even when endplates are close to fully innervated. However, electrophysiological properties, such as input resistance, resting membrane potential and spontaneous neurotransmitter release kinetics (but not frequency) are similar between EDL muscles of Sod1−/− and wild-type mice. Administration of the potassium channel blocker 3,4-diaminopyridine, which broadens the presynaptic action potential, improves both neurotransmitter release and muscle strength. Together, these results suggest that ROS-associated motor nerve terminal dysfunction is a contributor to the observed muscle changes in Sod1−/− mice.
Collapse
Affiliation(s)
- Yun Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Maxim V. Ivannikov
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael E. Walsh
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yuhong Liu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Yiqiang Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Carlos A. Jaramillo
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gregory T. Macleod
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abnormalities in Early Markers of Muscle Involvement Support a Delay in Myogenesis in Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2014; 73:559-67. [DOI: 10.1097/nen.0000000000000078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Boyer JG, Deguise MO, Murray LM, Yazdani A, De Repentigny Y, Boudreau-Larivière C, Kothary R. Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Hum Mol Genet 2014; 23:4249-59. [PMID: 24691550 PMCID: PMC4103674 DOI: 10.1093/hmg/ddu142] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disruption in the expression of myogenic genes. This disruption was associated with a decrease in myofiber size and an increase in immature myofibers, suggesting that Smn is crucial for myogenic gene regulation and early muscle development. Histone deacetylase inhibitor trichostatin A treatment of SMA model mice increased myofiber size, myofiber maturity and attenuated the disruption of the myogenic program in these mice. Taken together, our work highlights the important contribution of myogenic program dysregulation to the muscle weakness observed in SMA.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Lyndsay M Murray
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | - Armin Yazdani
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine Department of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| |
Collapse
|
46
|
Fayzullina S, Martin LJ. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA). PLoS One 2014; 9:e93329. [PMID: 24667816 PMCID: PMC3965546 DOI: 10.1371/journal.pone.0093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/03/2014] [Indexed: 12/27/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Sleigh JN, Burgess RW, Gillingwater TH, Cader MZ. Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. J Neurosci Methods 2014; 227:159-65. [PMID: 24530702 DOI: 10.1016/j.jneumeth.2014.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The neuromuscular junction (NMJ) is a specialised synapse formed between a lower motor neuron and a skeletal muscle fibre, and is an early pathological target in numerous nervous system disorders, including amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy (SMA). Being able to accurately visualise and quantitatively characterise the NMJ in rodent models of neurological conditions, particularly during the early stages of disease, is thus of clear importance. NEW METHOD We present a method for dissection of rodent deep lumbrical muscles located in the hind-paw, and describe how to perform immunofluorescent morphological analysis of their NMJs. RESULTS These techniques allow the temporal assessment of a number of developmental and pathological NMJ phenotypes in lumbrical muscles. COMPARISON WITH EXISTING METHODS Small muscles, such as the distal hind-limb lumbrical muscles, possess a major advantage over larger muscles, such as gastrocnemius, in that they can be whole-mounted and the entire innervation pattern visualised. This reduces preparation time and ambiguity when evaluating important neuromuscular phenotypes. CONCLUSIONS Together, these methods will allow the reader to perform a detailed and accurate analysis of the neuromuscular system in rodent models of disease in order to identify pertinent features of neuropathology.
Collapse
Affiliation(s)
- James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | - Thomas H Gillingwater
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
48
|
Boyer JG, Ferrier A, Kothary R. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol 2013; 4:356. [PMID: 24391590 PMCID: PMC3866803 DOI: 10.3389/fphys.2013.00356] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Andrew Ferrier
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
49
|
THEME 11 THERAPEUTIC STRATEGIES. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Van Meerbeke JP, Gibbs RM, Plasterer HL, Miao W, Feng Z, Lin MY, Rucki AA, Wee CD, Xia B, Sharma S, Jacques V, Li DK, Pellizzoni L, Rusche JR, Ko CP, Sumner CJ. The DcpS inhibitor RG3039 improves motor function in SMA mice. Hum Mol Genet 2013; 22:4074-83. [PMID: 23727836 PMCID: PMC3781637 DOI: 10.1093/hmg/ddt257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy.
Collapse
Affiliation(s)
| | - Rebecca M. Gibbs
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ming-Yi Lin
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Bing Xia
- Repligen Corporation, Watham, MA, USA
| | | | | | - Darrick K. Li
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology and
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|