1
|
Lambert KJM, Singhal A, Leung AWS. The lateralized effects of Parkinson's Disease on motor imagery: Evidence from mental chronometry. Brain Cogn 2024; 178:106181. [PMID: 38796902 DOI: 10.1016/j.bandc.2024.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Alterations to the content of action representations may contribute to the movement challenges that characterize Parkinson's Disease (PD). One way to investigate action representations is through motor imagery. As PD motor symptoms typically have a unilateral onset, disease-related deficits related to action representations may follow a similarly lateralized pattern. The present study examined if temporal accuracy of motor imagery in individuals with PD differed according to the side of the body involved in the task. Thirty-eight participants with PD completed a mental chronometry task using their more affected and less affected side. Participants had significantly shorter mental versus physical movement times for the more affected. Higher imagery vividness in the kinaesthetic domain predicted shorter mental versus physical movement times for the more affected side, as did lower imagery vividness in the visual domain and poorer cognitive function. These results indicate that people with PD imagine movements differently when the target actions their more affected versus less affected side. It is additionally possible that side-specific deficits in the accurate processing of kinaesthetic information lead to an increased reliance on visual processes and cognitive resources to successfully execute motor imagery involving the more affected side.
Collapse
Affiliation(s)
- Kathryn J M Lambert
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Canada.
| | - Anthony Singhal
- Department of Psychology, Faculty of Science, University of Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - Ada W S Leung
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Canada
| |
Collapse
|
2
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Ma X, Liu P, Law S, Ravindran N, Xu B, Fan T, Feng K. Characteristics of psychomotor retardation distinguishes patients with depression using multichannel near-infrared spectroscopy and finger tapping task. J Affect Disord 2022; 318:255-262. [PMID: 36087791 DOI: 10.1016/j.jad.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psychomotor retardation (PMR) is frequently noted as a characteristic feature of major depressive disorder (MDD). In patients with depression, it is characterized by retardation of speech, emotion, thinking, and cognition. This study explored the activation pattern of the prefrontal cortex (PFC) during the finger-tapping task (FTT) in subjects with MDD, aiming to provide additional understanding on the connection between PMR and PFC activation pattern in depression through the use of near-Infrared Spectroscopy (NIRS). We hypothesized that, through use of NIRS during the FTT, motor retardation in depression would generate a distinct PFC activation pattern, allowing for differentiation between patients with MDD and healthy controls (HCs). METHODS Thirty-five patients with MDD and thirty-nine HCs underwent NIRS evaluation during performance of the FTT. The FTT included both left-finger tapping and right-finger tapping performed by a computer screen. Each participant was assessed using a 45-channel NIRS and various clinical scales. FINDINGS During the left-FTT, the left orbitofrontal cortex (OFC) showed higher oxy-hemoglobin (Oxy-Hb) activation in the MDD group when compared to the HCs. During the right-FTT, the right dorsolateral prefrontal cortex (DLPFC) demonstrated lower Oxy-Hb activation, and the dorsomedial prefrontal cortex (DMPFC) showed higher Oxy-Hb activation in the MDD group versus the HC group. CONCLUSION Our results demonstrated different activation patterns of the PFC between the MDD and HC groups, using FTT as a motor performance task. In particular, the OFC, the DLPFC and the DMPFC areas hold promise as new useful sites for such differentiation in future investigations.
Collapse
Affiliation(s)
- Xiangyun Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Pozi Liu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Samuel Law
- Department of Psychiatry, University of Toronto, Canada
| | | | - Bo Xu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Kun Feng
- YuQuan Hospital, Tsinghua University, Beijing 10000, China.
| |
Collapse
|
4
|
Motor Imagery: How to Assess, Improve Its Performance, and Apply It for Psychosis Diagnostics. Diagnostics (Basel) 2022; 12:diagnostics12040949. [PMID: 35453997 PMCID: PMC9025310 DOI: 10.3390/diagnostics12040949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
With this review, we summarize the state-of-the-art of scientific studies in the field of motor imagery (MI) and motor execution (ME). We composed the brain map and description that correlate different brain areas with the type of movements it is responsible for. That gives a more complete and systematic picture of human brain functionality in the case of ME and MI. We systematized the most popular methods for assessing the quality of MI performance and discussed their advantages and disadvantages. We also reviewed the main directions for the use of transcranial magnetic stimulation (TMS) in MI research and considered the principal effects of TMS on MI performance. In addition, we discuss the main applications of MI, emphasizing its use in the diagnostics of various neurodegenerative disorders and psychoses. Finally, we discuss the research gap and possible improvements for further research in the field.
Collapse
|
5
|
Chen P, Chen F, Chen G, Zhong S, Gong J, Zhong H, Ye T, Tang G, Wang J, Luo Z, Qi Z, Jia Y, Yang H, Yin Z, Huang L, Wang Y. Inflammation is associated with decreased functional connectivity of insula in unmedicated bipolar disorder. Brain Behav Immun 2020; 89:615-622. [PMID: 32688026 DOI: 10.1016/j.bbi.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/17/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Systemic inflammation and immune dysregulation have been considered as risk factors in the pathophysiology of mood disorders including bipolar disorder (BD). Previous neuroimaging studies have demonstrated metabolic, structural and functional abnormalities in the insula in BD, proposed that the insula played an important role in BD. We herein aimed to explore neural mechanisms underlying inflammation-induced in the insular subregions functional connectivity (FC) in patients with BD. METHODS Brain resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 41 patients with unmedicated BD II (current episode depressed), 68 healthy controls (HCs). Three pairs of insular seed regions were selected: the bilateral anterior insula (AI), the bilateral middle insula (MI) and the bilateral posterior insula (PI), and calculated the whole-brain FC for each subregion. Additionally, the serum levels of pro-inflammatory cytokines in patients and HCs, including IL-6 and TNF-α, were detected. Then the partial correlation coefficients between the abnormal insular subregions FC values and pro-inflammatory cytokines levels in patients with BD II depression were calculated. RESULTS The BD II depression group exhibited decreased FC between the right PI and the left postcentral gyrus, and increased FC between the left AI and the bilateral insula (extended to the right putamen) when compared with the HC group. Moreover, the patients with BD II depression showed higher IL-6 and TNF-α levels than HCs, and IL-6 level was negatively correlated with FC of the right PI to the left postcentral gyrus. CONCLUSIONS Our results demonstrated that abnormal FC between the bilateral insula, and between the insula and sensorimotor areas in BD. Moreover, disrupted FC between the insula and sensorimotor areas was associated with elevated pro-inflammatory cytokine levels of IL-6 in BD.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China; Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Hui Zhong
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510630, China
| | - Tao Ye
- Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengwen Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510630, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
DiFrancesco MW, Lee G, Altaye M, Beebe DW, Meyers-Eaton J, Brunner HI. Cerebral microvascular and microstructural integrity is regionally altered in patients with systemic lupus erythematosus. Arthritis Res Ther 2020; 22:135. [PMID: 32513258 PMCID: PMC7281933 DOI: 10.1186/s13075-020-02227-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background To measure regional brain microvascular and microstructural changes in childhood-onset SLE (cSLE) using diffusion-weighted imaging (DWI) at multiple b values and investigate relationships of those measures with neurocognitive function and disease activity. Methods In this cross-sectional, case-control study, vascular volume fraction, effective diffusion, parenchymal diffusion, and blood flow parameters were regionally compared in cSLE patients and matched healthy controls. These markers of microvascular and microstructural integrity were derived by diffusion-weighted brain MRI and intravoxel incoherent motion (IVIM) modeling. Formal neurocognitive testing was completed focused on the domains of attention, visuoconstructional ability, working memory, and psychomotor speed. Test scores and measures of disease severity were regressed against regional microvascular integrity parameters among cSLE patients. Results Formal cognitive testing confirmed normal cognitive ability among all cSLE patients included in the analysis (n = 11). Nevertheless, reduction in blood volume fraction coincided with increased effective diffusion and flow parameters in cSLE patients vs. controls in posterior brain regions including the cuneus and precuneus. Regional microvascular measures correlated (|r| = 0.54–0.66) with neuropsychiatric scores and disease activity among cSLE patients. Conclusions There is imaging evidence, using IVIM, of degraded microvascular integrity in cSLE patients with normal cognitive ability. The observed regional changes correspond with posterior vascular border zones. These outcomes appear consistent with regional gray matter volume loss previously observed in cSLE patients with overt neurocognitive deficits, supporting the notion that adverse vascular changes precede loss of cognitive ability in cSLE. Longitudinal studies are needed to confirm the findings of this initial study.
Collapse
Affiliation(s)
- Mark W DiFrancesco
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Gregory Lee
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Dean W Beebe
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jamie Meyers-Eaton
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Hermine I Brunner
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| |
Collapse
|
7
|
Fan Y, Liu J, Zeng LL, Dong Q, Su J, Peng L, Shen H, Lu X, Sun J, Zhang L, Wang M, Raj J, Liu B, Hu D, Li L. State-Independent and -Dependent Structural Connectivity Alterations in Depression. Front Psychiatry 2020; 11:568717. [PMID: 33329107 PMCID: PMC7733996 DOI: 10.3389/fpsyt.2020.568717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Some brain abnormalities persist at the remission phase, that is, the state-independent abnormalities, which may be one of the reasons for the high recurrence of major depressive disorder (MDD). Hence, it is of great significance to identify state-independent abnormalities of MDD through longitudinal investigation. Ninety-nine MDD patients and 118 healthy controls (HCs) received diffusion tensor imaging scanning at baseline. After 6-month antidepressant treatment, 68 patients received a second scan, among which 59 patients achieved full clinical remission. Differences in whole-brain structural connectivity (SC) between patients with MDD at baseline and HCs were estimated by two-sample t-tests. Masked with significantly changed SCs in MDD, two-sample t-tests were conducted between the remitted MDD subgroup at follow-up and HCs, and paired t-tests were implemented to compare the differences of SC in the remitted MDD subgroup before and after treatment. Significantly decreased SC between the right insula and the anterior temporal cortex (ATC), between the right ATC and the posterior temporal cortex (PTC), between the left ATC and the auditory cortex as well as increased connectivity between the right posterior cingulate cortex (PCC) and the left medial parietal cortex (MPC) were observed in the MDD group compared with the HC group at baseline (p < 0.05, FDR corrected). The decreased connectivity between the right insula and the ATC and increased connectivity between the right PCC and the left MPC persisted in the remitted MDD subgroup at follow-up (p < 0.05, FDR corrected). The decreased SC between the right insula and the ATC and increased SC between the right PCC and left MPC showed state-independent characters, which may be implicated in the sustained negative attention bias and motor retardation in MDD. In contrast, the decreased SC between the right ATC and the PTC and between the left ATC and the auditory cortex seemed to be state-dependent.
Collapse
Affiliation(s)
- Yiming Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jin Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Qiangli Dong
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xiaowen Lu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Jinrong Sun
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Liang Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Mi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Jugessur Raj
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Bangshan Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
8
|
Bracht T, Steinau S, Federspiel A, Schneider C, Wiest R, Walther S. Physical activity is associated with left corticospinal tract microstructure in bipolar depression. NEUROIMAGE-CLINICAL 2018; 20:939-945. [PMID: 30308380 PMCID: PMC6178191 DOI: 10.1016/j.nicl.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system in BD during depression and its association with motor activity. We hypothesized reduced physical activity, microstructural alterations of motor tracts and different associations between activity levels and motor tract microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tractography. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and TBSS analyses did not detect significant group differences. Our results point to white matter microstructure alterations of the left CST in BD. The positive association between motor activity and white matter microstructure suggests a compensatory role of the left CST for psychomotor retardation in BD. Daily physical activity is reduced in bipolar patients with a current depressive episode (BD) The left corticospinal tract (CST) in BD shows increased fractional anisotropy (FA) Increases of FA in the left corticospinal tract in BD are related to less pronounced psychomotor retardation
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Psychiatric University Hospital Zurich, Department of Forensic Psychiatry, Zurich, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Aftanas LI, Bazanova OM, Novozhilova NV. Posture-Motor and Posture-Ideomotor Dual-Tasking: A Putative Marker of Psychomotor Retardation and Depressive Rumination in Patients With Major Depressive Disorder. Front Hum Neurosci 2018; 12:108. [PMID: 29628881 PMCID: PMC5876932 DOI: 10.3389/fnhum.2018.00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy (E) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: ΔE = (EDual-task - ESingle-task). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple linear regression analysis evidenced further that the dual-tasking energy cost (i.e., ΔE) significantly predicted clinical scores of severity of MDD and depressive rumination. Conclusion: The findings allow to suggest that execution of concurrent actual or imaginary fine motor task with closed visual input deallocates attentional resources from compelling maladaptive depressive rumination thereby attenuating severity of absolute dual-tasking energy costs for balance maintenance in patients with MDD. Significance: Quantitative assessment of PMR through measures of the postural performance in dual-tasking may be useful to capture the negative impact of past depressive episodes, optimize the personalized treatment selection, and improve the understanding of the pathophysiological mechanisms underlying MDD.
Collapse
Affiliation(s)
- Lyubomir I Aftanas
- Laboratory of Affective, Cognitive and Translational Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Olga M Bazanova
- Laboratory of Affective, Cognitive and Translational Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Nataliya V Novozhilova
- Laboratory of Affective, Cognitive and Translational Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| |
Collapse
|
11
|
Laidi C, Houenou J. Brain functional effects of psychopharmacological treatments in bipolar disorder. Eur Neuropsychopharmacol 2016; 26:1695-1740. [PMID: 27617780 DOI: 10.1016/j.euroneuro.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/06/2016] [Accepted: 06/18/2016] [Indexed: 12/29/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have contributed to the understanding of bipolar disorder. However the effect of medication on brain activation remains poorly understood. We conducted an extensive literature review on PubMed and ScienceDirect to investigate the influence of medication in fMRI studies, including both longitudinal and cross-sectional studies, which aimed at assessing this influence. Although we reported all reviewed studies, we gave greater emphasis to studies with the most robust methodology. One hundred and forty studies matched our inclusion criteria and forty-seven studies demonstrated an effect of pharmacological treatment on fMRI blood oxygen level dependent (BOLD) signal in adults and children with bipolar disorder. Out of these studies, nineteen were longitudinal. Most of cross-sectional studies suffered from methodological bias, due to post-hoc analyses performed on a limited number of patients and did not find any effect of medication. However, both longitudinal and cross-sectional studies showing an impact of treatment tend to suggest that medication prescribed to patients with bipolar disorder mostly influenced brain activation in prefrontal regions, when measured by tasks involving emotional regulation and processing as well as non-emotional cognitive tasks. FMRI promises to elucidate potential new biomarkers in bipolar disorder and could be used to evaluate the effect of new therapeutic compounds. Further research is needed to disentangle the effect of medication and the influence of the changes in mood state on brain activation in patients with bipolar disorder.
Collapse
Affiliation(s)
- Charles Laidi
- APHP, Mondor University Hospitals, DHU PePsy, Psychiatry Department, Créteil, France; INSERM, U955, IMRB, Translational Psychiatry, Créteil, France; Faculté de médecine de Créteil, Université Paris Est Créteil (UPEC), France; Fondation FondaMental, Créteil, France; UNIACT Lab, Psychiatry Team, NeuroSpin, I2BM, CEA Saclay, Gif Sur Yvette, Cedex, France.
| | - Josselin Houenou
- APHP, Mondor University Hospitals, DHU PePsy, Psychiatry Department, Créteil, France; INSERM, U955, IMRB, Translational Psychiatry, Créteil, France; Faculté de médecine de Créteil, Université Paris Est Créteil (UPEC), France; Fondation FondaMental, Créteil, France; UNIACT Lab, Psychiatry Team, NeuroSpin, I2BM, CEA Saclay, Gif Sur Yvette, Cedex, France
| |
Collapse
|
12
|
Liberg B, Rahm C. The functional anatomy of psychomotor disturbances in major depressive disorder. Front Psychiatry 2015; 6:34. [PMID: 25806006 PMCID: PMC4354237 DOI: 10.3389/fpsyt.2015.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
Psychomotor disturbances (PMD) are a classic feature of depressive disorder that provides rich clinical information. The aim our narrative review was to characterize the functional anatomy of PMD by summarizing findings from neuroimaging studies. We found evidence across several neuroimaging modalities that suggest involvement of fronto-striatal neurocircuitry, and monoaminergic pathways and metabolism. We suggest that PMD in major depressive disorder emerge from an alteration of limbic signals, which influence emotion, volition, higher-order cognitive functions, and movement.
Collapse
Affiliation(s)
- Benny Liberg
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden
| | - Christoffer Rahm
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; Unit of Metabolism, Department of Medicine Huddinge, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
13
|
Altered resting-state connectivity in college students with nonclinical depressive symptoms. PLoS One 2014; 9:e114603. [PMID: 25502215 PMCID: PMC4264752 DOI: 10.1371/journal.pone.0114603] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023] Open
Abstract
Background The underlying brain basis of nonclinical depressive symptoms (nCDSs) is largely unknown. Recently, the seed-based functional connectivity (FC) approach for analyzing resting-state fMRI (rs-fMRI) data has been increasingly used to explore the neural basis of depressive disorders. Other than common seed-based FC method using an a priori seed region, we conducted FC analysis based on regions with altered spontaneous activity revealed by the fractional amplitude of low-frequency fluctuations (fALFF) approach. The aim of the present study was to provide novel insight in the underlying mechanism of nCDSs in college students. Methodology/Principal Findings A total number of 1105 college students were recruited to participant in a survey for assessing depressive symptoms. Subsequently, 17 individuals with nCDSs and 20 healthy controls (HCs) were enrolled to perform MR studies. Alternations of fALFF were identified in the right superior parietal lobule (SPL) and left lingual gyrus, both of which were used as ROIs for further FC analysis. With right SPL, compare with HCs, subjects with nCDSs showed reduced FCs in the bilateral dorsal lateral prefrontal cortex (DLPFC), left inferior frontal gurus (IFG), left premotor cortex (PMC), DMN network [i.e., bilateral precuneus, posterior cingulate cortex (PCC), right supramarginal gyrus (SMG), right parahippocampal gyrus (PHG), bilateral inferior temporal gurus (ITG)] and left cerebellum posterior lobe (CPL). In addition, increased FCs were observed between the left lingual gyrus and right fusiform gyrus as well as in the left precuneus. Conclusion/Significance Our results indicate the abnormalities of spontaneous activity in the right SPL and left lingual gyrus and their corresponding dysfunction of the brain circuits might be related to the pathophysiology of nCDSs.
Collapse
|
14
|
Bennabi D, Monnin J, Haffen E, Carvalho N, Vandel P, Pozzo T, Papaxanthis C. Motor imagery in unipolar major depression. Front Behav Neurosci 2014; 8:413. [PMID: 25538580 PMCID: PMC4255608 DOI: 10.3389/fnbeh.2014.00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 11/12/2014] [Indexed: 01/25/2023] Open
Abstract
Background: Motor imagery is a potential tool to investigate action representation, as it can provide insights into the processes of action planning and preparation. Recent studies suggest that depressed patients present specific impairment in mental rotation. The present study was designed to investigate the influence of unipolar depression on motor imagery ability. Methods: Fourteen right-handed patients meeting DSM-IV criteria for unipolar depression were compared to 14 matched healthy controls. Imagery ability was accessed by the timing correspondence between executed and imagined movements during a pointing task, involving strong spatiotemporal constraints (speed/accuracy trade-off paradigm). Results: Compared to controls, depressed patients showed marked motor slowing on both actual and imagined movements. Furthermore, we observed greater temporal discrepancies between actual and mental movements in depressed patients than in healthy controls. Lastly, depressed patients modulated, to some extent, mental movement durations according to the difficulty of the task, but this modulation was not as strong as that of healthy subjects. Conclusion: These results suggest that unipolar depression significantly affects the higher stages of action planning and point out a selective decline of motor prediction.
Collapse
Affiliation(s)
- Djamila Bennabi
- Department of Clinical Psychiatry, University Hospital of Besançon , Besançon , France ; EA 481 Neurosciences, University Hospital of Besançon , Besançon , France ; FondaMental Foundation , Créteil , France
| | - Julie Monnin
- Department of Clinical Psychiatry, University Hospital of Besançon , Besançon , France ; EA 481 Neurosciences, University Hospital of Besançon , Besançon , France ; Centre d'Investigation Clinique en Innovation Technologique de Besançon (CIC-IT 808) INSERM , Besançon , France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, University Hospital of Besançon , Besançon , France ; EA 481 Neurosciences, University Hospital of Besançon , Besançon , France ; FondaMental Foundation , Créteil , France ; Centre d'Investigation Clinique en Innovation Technologique de Besançon (CIC-IT 808) INSERM , Besançon , France ; FHU Integrated Center for Research in Inflammatory Diseases (InCREASe) INSERM , Besançon , France
| | - Nicolas Carvalho
- Department of Clinical Psychiatry, University Hospital of Besançon , Besançon , France ; EA 481 Neurosciences, University Hospital of Besançon , Besançon , France
| | - Pierre Vandel
- Department of Clinical Psychiatry, University Hospital of Besançon , Besançon , France ; Centre d'Investigation Clinique en Innovation Technologique de Besançon (CIC-IT 808) INSERM , Besançon , France ; FHU Integrated Center for Research in Inflammatory Diseases (InCREASe) INSERM , Besançon , France
| | - Thierry Pozzo
- UFR STAPS, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, INSERM , Dijon , France ; Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia , Genoa , Italy ; Institut Universitaire de France (IUF) , Dijon , France
| | - Charalambos Papaxanthis
- UFR STAPS, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, INSERM , Dijon , France
| |
Collapse
|
15
|
Liberg B, Klauser P, Harding IH, Adler M, Rahm C, Lundberg J, Masterman T, Wachtler C, Jonsson T, Kristoffersen-Wiberg M, Pantelis C, Wahlund B. Functional and structural alterations in the cingulate motor area relate to decreased fronto-striatal coupling in major depressive disorder with psychomotor disturbances. Front Psychiatry 2014; 5:176. [PMID: 25538633 PMCID: PMC4255491 DOI: 10.3389/fpsyt.2014.00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/21/2014] [Indexed: 01/14/2023] Open
Abstract
Psychomotor disturbances are a classic feature of major depressive disorders. These can manifest as lack of facial expressions and decreased speech production, reduced body posture and mobility, and slowed voluntary movement. The neural correlates of psychomotor disturbances in depression are poorly understood but it has been suggested that outputs from the cingulate motor area (CMA) to striatal motor regions, including the putamen, could be involved. We used functional and structural magnetic resonance imaging to conduct a region-of-interest analysis to test the hypotheses that neural activation patterns related to motor production and gray matter volumes in the CMA would be different between depressed subjects displaying psychomotor disturbances (n = 13) and matched healthy controls (n = 13). In addition, we conducted a psychophysiological interaction analysis to assess the functional coupling related to self-paced finger-tapping between the caudal CMA and the posterior putamen in patients compared to controls. We found a cluster of increased neural activation, adjacent to a cluster of decreased gray matter volume in the caudal CMA in patients compared to controls. The functional coupling between the left caudal CMA and the left putamen during finger-tapping task performance was additionally decreased in patients compared to controls. In addition, the strength of the functional coupling between the left caudal CMA and the left putamen was negatively correlated with the severity of psychomotor disturbances in the patient group. In conclusion, we found converging evidence for involvement of the caudal CMA and putamen in the generation of psychomotor disturbances in depression.
Collapse
Affiliation(s)
- Benny Liberg
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Medical Imaging and Technology, Karolinska Institutet , Stockholm , Sweden
| | - Paul Klauser
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; Monash Clinical and Imaging Neuroscience, School of Psychology and Psychiatry, Monash University , Clayton, VIC , Australia
| | - Ian H Harding
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - Mats Adler
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Christoffer Rahm
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia ; Department of Medicine Huddinge, Karolinska Institutet , Stockholm , Sweden
| | - Johan Lundberg
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Thomas Masterman
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Caroline Wachtler
- Primary Care Research Unit, Department of General Practice, The University of Melbourne , Melbourne, VIC , Australia ; Centre for Family Medicine (CeFAM), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet , Stockholm , Sweden
| | - Tomas Jonsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Medical Imaging and Technology, Karolinska Institutet , Stockholm , Sweden ; Department of Medical Physics, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Maria Kristoffersen-Wiberg
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Medical Imaging and Technology, Karolinska Institutet , Stockholm , Sweden ; Department of Radiology, Karolinska University Hospital , Stockholm , Sweden
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne , Melbourne, VIC , Australia
| | - Björn Wahlund
- Department of Energy and Engineering, Swedish University of Agricultural Sciences , Uppsala , Sweden
| |
Collapse
|