1
|
Awuah WA, Aderinto N, Poornaselvan J, Tan JK, Shah MH, Ashinze P, Pujari AG, Bharadwaj HR, Abdul‐Rahman T, Atallah O. Empowering health care consumers & understanding patients' perspectives on AI integration in oncology and surgery: A perspective. Health Sci Rep 2024; 7:e2268. [PMID: 39050906 PMCID: PMC11266117 DOI: 10.1002/hsr2.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/24/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Artificial intelligence (AI) is transforming oncology and surgery by improving diagnostics, personalizing treatments, and enhancing surgical precision. Patients appreciate AI for its potential to provide accurate prognoses and tailored therapies. However, AI's implementation raises ethical concerns, data privacy issues, and the need for transparent communication between patients and health care providers. This study aims to understand patients' perspectives on AI integration in oncology and surgery to foster a balanced and patient-centered approach. Methods The study utilized a comprehensive literature review and analysis of existing research on AI applications in oncology and surgery. The focus was on examining patient perceptions, ethical considerations, and the potential benefits and risks associated with AI integration. Data was collected from peer-reviewed journals, conference proceedings, and expert opinions to provide a broad understanding of the topic. The perspectives of patients was also emphasized to highlight the nuances of their acceptance and concerns regarding AI in their health care. Results Patients generally perceive AI in oncology and surgery as beneficial, appreciating its potential for more accurate diagnoses, personalized treatment plans, and improved surgical outcomes. They particularly value AI's role in providing timely and precise diagnostics, which can lead to better prognoses and reduced anxiety. However, concerns about data privacy, ethical implications, and the reliability of AI systems were prevalent. Consequently, trust in AI and health care providers was deemed as a crucial factor for patient acceptance. Additionally, the need for transparent communication and ethical safeguards was also highlighted to address these concerns effectively. Conclusion The integration of AI in oncology and surgeryholds significant promise for enhancing patient care and outcomes. Patients view AI as a valuable tool that can provide accurate prognoses and personalized treatments. However, addressing ethical concerns, ensuring data privacy, and building trust through transparent communication are essential for successful AI integration. Future initiatives should focus on refining AI algorithms, establishing robust ethical guidelines, and enhancing patient education to harmonize technological advancements with patient-centered care principles.
Collapse
Affiliation(s)
| | - Nicholas Aderinto
- Internal Medicine DepartmentLAUTECH Teaching HospitalOgbomosoNigeria
| | | | | | | | - Patrick Ashinze
- Faculty of Clinical SciencesUniversity of IlorinIlorinNigeria
| | | | | | | | - Oday Atallah
- Department of NeurosurgeryHannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Weaver C, Nam A, Settle C, Overton M, Giddens M, Richardson KP, Piver R, Mysona DP, Rungruang B, Ghamande S, McIndoe R, Purohit S. Serum Proteomic Signatures in Cervical Cancer: Current Status and Future Directions. Cancers (Basel) 2024; 16:1629. [PMID: 38730581 PMCID: PMC11083044 DOI: 10.3390/cancers16091629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In 2020, the World Health Organization (WHO) reported 604,000 new diagnoses of cervical cancer (CC) worldwide, and over 300,000 CC-related fatalities. The vast majority of CC cases are caused by persistent human papillomavirus (HPV) infections. HPV-related CC incidence and mortality rates have declined worldwide because of increased HPV vaccination and CC screening with the Papanicolaou test (PAP test). Despite these significant improvements, developing countries face difficulty implementing these programs, while developed nations are challenged with identifying HPV-independent cases. Molecular and proteomic information obtained from blood or tumor samples have a strong potential to provide information on malignancy progression and response to therapy in CC. There is a large amount of published biomarker data related to CC available but the extensive validation required by the FDA approval for clinical use is lacking. The ability of researchers to use the big data obtained from clinical studies and to draw meaningful relationships from these data are two obstacles that must be overcome for implementation into clinical practice. We report on identified multimarker panels of serum proteomic studies in CC for the past 5 years, the potential for modern computational biology efforts, and the utilization of nationwide biobanks to bridge the gap between multivariate protein signature development and the prediction of clinically relevant CC patient outcomes.
Collapse
Affiliation(s)
- Chaston Weaver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Alisha Nam
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Caitlin Settle
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Madelyn Overton
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Maya Giddens
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Katherine P. Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Rachael Piver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - David P. Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Bunja Rungruang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| |
Collapse
|
3
|
Huang ML, Ren J, Jin ZY, Liu XY, Li Y, He YL, Xue HD. Application of magnetic resonance imaging radiomics in endometrial cancer: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:439-456. [PMID: 38349417 DOI: 10.1007/s11547-024-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/03/2024] [Indexed: 03/16/2024]
Abstract
PURPOSE We aimed to systematically assess the methodological quality and clinical potential application of published magnetic resonance imaging (MRI)-based radiomics studies about endometrial cancer (EC). METHODS Studies of EC radiomics analyses published between 1 January 2000 and 19 March 2023 were extracted, and their methodological quality was evaluated using the radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Pairwise correlation analyses and separate meta-analyses of studies exploring differential diagnoses and risk prediction were also performed. RESULTS Forty-five studies involving 3 aims were included. The mean RQS was 13.77 (range: 9-22.5); publication bias was observed in the areas of 'index test' and 'flow and timing'. A high RQS was significantly associated with therapy selection-aimed studies, low QUADAS-2 risk, recent publication year, and high-performance metrics. Raw data from 6 differential diagnosis and 34 risk prediction models were subjected to meta-analysis, revealing diagnostic odds ratios of 23.81 (95% confidence interval [CI] 8.48-66.83) and 18.23 (95% CI 13.68-24.29), respectively. CONCLUSION The methodological quality of radiomics studies involving patients with EC is unsatisfactory. However, MRI-based radiomics analyses showed promising utility in terms of differential diagnosis and risk prediction.
Collapse
Affiliation(s)
- Meng-Lin Huang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Xin-Yu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| |
Collapse
|
4
|
Garg P, Mohanty A, Ramisetty S, Kulkarni P, Horne D, Pisick E, Salgia R, Singhal SS. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:189026. [PMID: 37980945 DOI: 10.1016/j.bbcan.2023.189026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research, Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Departments of Medical Oncology & Therapeutics Research, Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Evan Pisick
- Department of Medical Oncology, City of Hope, Chicago, IL 60099, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Koch AH, Jeelof LS, Muntinga CLP, Gootzen TA, van de Kruis NMA, Nederend J, Boers T, van der Sommen F, Piek JMJ. Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review. Insights Imaging 2023; 14:34. [PMID: 36790570 PMCID: PMC9931983 DOI: 10.1186/s13244-022-01345-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/05/2022] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVES Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors. METHODS We searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards. RESULTS In thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6-100% and 66.7-100% and specificities ranged from 76.3-100%; 69-100% and 77.8-100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set. CONCLUSION Based on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.
Collapse
Affiliation(s)
- Anna H. Koch
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - Lara S. Jeelof
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - Caroline L. P. Muntinga
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - T. A. Gootzen
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - Nienke M. A. van de Kruis
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - Joost Nederend
- grid.413532.20000 0004 0398 8384Department of Radiology, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| | - Tim Boers
- grid.6852.90000 0004 0398 8763Department of Electrical Engineering, VCA Group, University of Technology Eindhoven, 5600 MB Eindhoven, Noord-Brabant The Netherlands
| | - Fons van der Sommen
- grid.6852.90000 0004 0398 8763Department of Electrical Engineering, VCA Group, University of Technology Eindhoven, 5600 MB Eindhoven, Noord-Brabant The Netherlands
| | - Jurgen M. J. Piek
- grid.413532.20000 0004 0398 8384Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant, The Netherlands
| |
Collapse
|
6
|
On the use of spectroscopy, prediction machines and cybernetics for an affordable and proactive care approach for endometrial cancer. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Precision gynecologic oncology: circulating cell free DNA epigenomic analysis, artificial intelligence and the accurate detection of ovarian cancer. Sci Rep 2022; 12:18625. [PMID: 36329159 PMCID: PMC9633647 DOI: 10.1038/s41598-022-23149-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer due primarily to its asymptomatic nature and late stage at diagnosis. The development of non-invasive markers is an urgent priority. We report the accurate detection of epithelial OC using Artificial Intelligence (AI) and genome-wide epigenetic analysis of circulating cell free tumor DNA (cfTDNA). In a prospective study, we performed genome-wide DNA methylation profiling of cytosine (CpG) markers. Both conventional logistic regression and six AI platforms were used for OC detection. Further, we performed Gene Set Enrichment Analysis (GSEA) analysis to elucidate the molecular pathogenesis of OC. A total of 179,238 CpGs were significantly differentially methylated (FDR p-value < 0.05) genome-wide in OC. High OC diagnostic accuracies were achieved. Conventional logistic regression achieved an area under the ROC curve (AUC) [95% CI] 0.99 [± 0.1] with 95% sensitivity and 100% specificity. Multiple AI platforms each achieved high diagnostic accuracies (AUC = 0.99-1.00). For example, for Deep Learning (DL)/AI AUC = 1.00, sensitivity = 100% and 88% specificity. In terms of OC pathogenesis: GSEA analysis identified 'Adipogenesis' and 'retinoblastoma gene in cancer' as the top perturbed molecular pathway in OC. This finding of epigenomic dysregulation of molecular pathways that have been previously linked to cancer adds biological plausibility to our results.
Collapse
|
8
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|