1
|
Noufal Y, Kringel D, Toennes SW, Dudziak R, Lötsch J. Pharmacological data science perspective on fatal incidents of morphine treatment. Pharmacol Ther 2023; 241:108312. [PMID: 36423714 DOI: 10.1016/j.pharmthera.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
Morphine prescribed for analgesia has caused drug-related deaths at an estimated incidence of 0.3% to 4%. Morphine has pharmacological properties that make it particularly difficult to assess the causality of morphine administration with a patient's death, such as its slow transfer between plasma and central nervous sites of action and the existence of the active metabolite morphine-6-glucuronide with opioid agonistic effects, Furthermore, there is no well-defined toxic dose or plasma/blood concentration for morphine. Dosing is often adjusted for adequate pain relief. Here, we summarize reported deaths associated with morphine therapy, including associated morphine exposure and modulating patient factors such as pharmacogenetics, concomitant medications, or comorbidities. In addition, we systematically analyzed published numerical information on the stability of concentrations of morphine and its relevant metabolites in biological samples collected postmortem. A medicolegal case is presented in which the causality of morphine administration with death was in dispute and pharmacokinetic modeling was applied to infer the administered dose. The results of this analytical review suggest that (i) inference from postmortem blood concentrations to the morphine dose administered has low validity and (ii) causality between a patient's death and the morphine dose administered remains a highly context-dependent and collaborative assessment among experts from different medical specialties.
Collapse
Affiliation(s)
- Yazan Noufal
- Goethe-University, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dario Kringel
- Goethe-University, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefan W Toennes
- Goethe-University, University Hospital Frankfurt, Institute of Legal Medicine, Kennedyallee 104, 60596 Frankfurt am Main, Germany
| | - Rafael Dudziak
- Goethe-University, University Hospital Frankfurt, Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Goethe-University, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Vitte J, Sabato V, Tacquard C, Garvey LH, Michel M, Mertes PM, Ebo DG, Schwartz LB, Castells MC. Use and Interpretation of Acute and Baseline Tryptase in Perioperative Hypersensitivity and Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2994-3005. [PMID: 33746087 DOI: 10.1016/j.jaip.2021.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022]
Abstract
Paired acute and baseline serum or plasma tryptase sampling and determination have recently been included as a mechanistic approach in the diagnostic and management guidelines of perioperative immediate hypersensitivity and anaphylaxis. The timing of this paired sampling is clearly defined in international consensus statements, with the optimal window for acute tryptase sampling between 30 minutes and 2 hours after the initiation of symptoms, whereas baseline tryptase should be measured in a sample collected before the event (preop) or at least 24 hours after all signs and symptoms have resolved. A transient elevation of the acute tryptase level greater than [2 + (1.2 × baseline tryptase level)] supports the involvement and activation of mast cells. Here, we provide the clinical, pathophysiological, and technical rationale for the procedure and interpretation of paired acute and baseline tryptase. Clinical examples, up-to-date knowledge of hereditary α-tryptasemia as a frequent cause of baseline tryptase of 7 μg/L and higher, mastocytosis, other clonal myeloid disorders, cardiovascular or renal failure, and technical improvements resulting in continued lowering of the 95th percentile value are discussed. Clues for improved management of perioperative immediate hypersensitivity and anaphylaxis include (1) sustained dissemination and implementation of updated guidelines; (2) preoperative sample storage for deferred analysis; (3) referral for thorough allergy investigation, screening for mast cell-related disorders, and recommendations for future anesthetic procedures; and (4) sustained collaboration between anesthesiologists, immunologists, and allergists.
Collapse
Affiliation(s)
- Joana Vitte
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France; IDESP, INSERM UMR UA11, University of Montpellier, Montpellier, France
| | - Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; AZ Jan Palfijn Gent, Department of Immunology and Allergology, Ghent, Belgium
| | - Charles Tacquard
- Nouvel Hôpital Civil, hôpitaux universitaires de Strasbourg, service d'anesthésie-réanimation chirurgicale, 1, place de l'Hôpital, Strasbourg, France
| | - Lene H Garvey
- Allergy Clinic, Department of Dermatology and Allergy, Gentofte Hospital, Gentofte, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Moïse Michel
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France; Laboratoire d'Immunologie, CHU de Nîmes, Nîmes, France
| | - Paul-Michel Mertes
- Nouvel Hôpital Civil, hôpitaux universitaires de Strasbourg, service d'anesthésie-réanimation chirurgicale, 1, place de l'Hôpital, Strasbourg, France
| | - Didier G Ebo
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; AZ Jan Palfijn Gent, Department of Immunology and Allergology, Ghent, Belgium
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University, Richmond, Va
| | - Mariana C Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|