1
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
2
|
Heimdörfer D, Artamonova N, Culig Z, Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J Cancer Res Clin Oncol 2024; 150:462. [PMID: 39412660 PMCID: PMC11485041 DOI: 10.1007/s00432-024-05983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related deaths among men. While adenocarcinoma of the prostate (adeno-PCa) is well-characterized, neuroendocrine prostate cancer (NEPC) remains poorly understood. Generally, NEPC is a rare but highly aggressive histological variant, however its limited patho-physiological understanding leads to insufficient treatment options associated with low survival rates for NEPC patients. Current treatments for NEPC, including platinum-based therapies, offer some efficacy, but there is a significant need for more targeted approaches. This review summarizes the molecular characteristics of NEPC in contrast to adeno-PCa, providing a comprehensive comparison. A significant portion of the discussion is dedicated to the tumor microenvironment (TME), which has recently been identified as a key factor in tumor progression. The TME includes various cells, signaling molecules, and the extracellular matrix surrounding the tumor, all of which play critical roles in cancer development and response to treatment. Understanding the TME's influence on NEPC could uncover new avenues for innovative treatment strategies, potentially improving outcomes for patients with this challenging variant of PCa.
Collapse
Affiliation(s)
- David Heimdörfer
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Nastasiia Artamonova
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
3
|
Alhamar M, Sethi S, Reuter VE, Fine SW. Primary Well-Differentiated Neuroendocrine Tumor/Carcinoid of the Prostate: Case Report and Review of Literature. Int J Surg Pathol 2024; 32:1374-1378. [PMID: 38303155 DOI: 10.1177/10668969241228297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Primary well-differentiated neuroendocrine tumor (WDNT)/carcinoid of the genitourinary tract is rare. Many WDNT reported in the prostate gland have been seen in close association with conventional prostatic adenocarcinoma and/or label for prostate-specific immunohistochemical markers and are best considered prostatic adenocarcinomas with "carcinoid-like" features. We present a case of primary WDNT/carcinoid incidentally detected in a 67-year-old man who underwent radical prostatectomy for Grade group 2 prostatic adenocarcinoma. Morphologically, the neuroendocrine (NE) lesion appeared distinct from the prostatic adenocarcinoma, labeled for NE markers, was negative for prostatic markers (NKX3.1, PSA, and ERG), and showed an overall low Ki-67 proliferation index (<1%). Follow-up was uneventful with no evidence of residual disease or metastasis.
Collapse
Affiliation(s)
- Mohamed Alhamar
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shenon Sethi
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Takei T, Hamamura Y, Hongo H, Tashiro E, Imoto M, Kosaka T, Oya M. Selective killing of castration-resistant prostate cancer cells by formycin A via the ATF4-CHOP axis. Cancer Sci 2024. [PMID: 39327674 DOI: 10.1111/cas.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer is initially androgen-dependent but often relapses to an androgen-independent state called castration-resistant prostate cancer (CRPC). Currently approved therapies have limited efficacy against CRPC, highlighting the need for novel therapeutic strategies. To address this need, we conducted a drug screen in our previously established aggressive CRPC cell model. We found that formycin A induced cell death in CRPC model cells but not in parental prostate cancer cells. In addition, formycin A upregulated death receptor 5 through the induction of endoplasmic reticulum stress, activating the "extrinsic" apoptosis pathway in CRPC model cells. Moreover, formycin A showed in vivo antitumor efficacy against CRPC xenografts in castrated nude mice. Thus, our findings highlight the potential of formycin A as a CRPC therapeutic.
Collapse
Affiliation(s)
- Tomoki Takei
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Hamamura
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Sabater A, Sanchis P, Seniuk R, Pascual G, Anselmino N, Alonso D, Cayol F, Vazquez E, Marti M, Cotignola J, Toro A, Labanca E, Bizzotto J, Gueron G. Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven 7-Gene Stemness Signature that Predicts Progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.24.24314303. [PMID: 39399052 PMCID: PMC11469473 DOI: 10.1101/2024.09.24.24314303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using advanced machine learning techniques, including Random Forest and Lasso regression, applied to large-scale transcriptomic datasets. The resulting 7-gene signature (KMT5C, MEN1, TYMS, IRF5, DNMT3B, CDC25B and DPP4) was validated across independent cohorts and patient-derived xenograft (PDX) models. The signature demonstrated strong prognostic value for progression-free, disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that exhibit this molecular signature, even when they were not histopathologically classified as NEPC. This dual prognostic and classifier capability makes the 7-gene signature a robust tool for personalized medicine, providing a valuable resource for predicting disease progression and guiding treatment strategies in PCa management.
Collapse
Affiliation(s)
- Agustina Sabater
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Rocio Seniuk
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Gaston Pascual
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina
| | - Federico Cayol
- Sector de Oncología Clínica, Hospital Italiano de Buenos Aires, Buenos Aires, C1199ABB, Argentina
| | - Elba Vazquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Marcelo Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Ayelen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
6
|
Liu S, Nam HS, Zeng Z, Deng X, Pashaei E, Zang Y, Yang L, Li C, Huang J, Wendt MK, Lu X, Huang R, Wan J. CDHu40: a novel marker gene set of neuroendocrine prostate cancer. Brief Bioinform 2024; 25:bbae471. [PMID: 39318189 PMCID: PMC11422505 DOI: 10.1093/bib/bbae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named CDHu40, demonstrated superior performance in distinguishing NE PCa (NEPC) and non-NEPC samples based on gene expression profiles. CDHu40 outperformed most of the other published marker sets, excelling particularly at the prognostic level. Notably, some marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Hye Seung Nam
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Ziyu Zeng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
| | - Xuehong Deng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Elnaz Pashaei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Yong Zang
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Lei Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN 46202, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr Room P3-12, Gainesville, FL 32603, United States
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Davison Building, 40 Duke Medicine, Durham, NC 27710, United States
| | - Michael K Wendt
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, United States
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| |
Collapse
|
7
|
Westaby D, Jiménez-Vacas JM, Figueiredo I, Rekowski J, Pettinger C, Gurel B, Lundberg A, Bogdan D, Buroni L, Neeb A, Padilha A, Taylor J, Zeng W, Das S, Hobern E, Riisnaes R, Crespo M, Miranda S, Ferreira A, Hanratty BP, Nava Rodrigues D, Bertan C, Seed G, Fenor de La Maza MDLD, Guo C, Carmichael J, Grochot R, Chandran K, Stavridi A, Varkaris A, Stylianou N, Hollier BG, Tunariu N, Balk SP, Carreira S, Yuan W, Nelson PS, Corey E, Haffner M, de Bono J, Sharp A. BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity. J Clin Invest 2024; 134:e179998. [PMID: 39286979 PMCID: PMC11405043 DOI: 10.1172/jci179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | | | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Arian Lundberg
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Buroni
- The Institute of Cancer Research, London, United Kingdom
| | - Antje Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Padilha
- The Institute of Cancer Research, London, United Kingdom
| | - Joe Taylor
- The Institute of Cancer Research, London, United Kingdom
| | - Wanting Zeng
- The Institute of Cancer Research, London, United Kingdom
| | - Souvik Das
- The Institute of Cancer Research, London, United Kingdom
| | - Emily Hobern
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Juliet Carmichael
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Rafael Grochot
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Khobe Chandran
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | - Andreas Varkaris
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nataly Stylianou
- Australian Prostate Cancer Research Centre-Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett G Hollier
- Australian Prostate Cancer Research Centre-Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nina Tunariu
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Peter S Nelson
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Eva Corey
- University of Washington, Seattle, Washington, USA
| | - Michael Haffner
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
8
|
Barhdaoui S, Lupo A, Sibony M. [Solution through progression]. Ann Pathol 2024:S0242-6498(24)00157-3. [PMID: 39174448 DOI: 10.1016/j.annpat.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Sarah Barhdaoui
- Département de pathologie, hôpital Cochin, Assistance publique-Hôpitaux de Paris, AP-HP.centre, université Paris Cité, 27, rue du Faubourg-Saint-Jacques, 75694 Paris cedex 14, France.
| | - Audrey Lupo
- Département de pathologie, hôpital Cochin, Assistance publique-Hôpitaux de Paris, AP-HP.centre, université Paris Cité, 27, rue du Faubourg-Saint-Jacques, 75694 Paris cedex 14, France; Université Paris Cité, Paris, France
| | - Mathilde Sibony
- Département de pathologie, hôpital Cochin, Assistance publique-Hôpitaux de Paris, AP-HP.centre, université Paris Cité, 27, rue du Faubourg-Saint-Jacques, 75694 Paris cedex 14, France; Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, Nip C, Shen Y, Johnson OT, Grigorean G, Phinney B, Liu L, Wei Q, Corey E, Tepper CG, Chen HW, Evans CP, Dall'Era MA, Gao AC, Gestwicki JE, Liu C. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun 2024; 15:6626. [PMID: 39103353 PMCID: PMC11300456 DOI: 10.1038/s41467-024-50459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Yuqiu Shen
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Brett Phinney
- Proteomics Core Facility, University of California, Davis, CA, USA
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Marc A Dall'Era
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA.
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| |
Collapse
|
10
|
Tendler S, Dunphy MP, Agee M, O'Donoghue J, Aly RG, Choudhury NJ, Kesner A, Kirov A, Mauguen A, Baine MK, Schoder H, Weber WA, Rekhtman N, Lyashchenko SK, Bodei L, Morris MJ, Lewis JS, Rudin CM, Poirier JT. Imaging with [ 89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumours of the lung and prostate: a phase 1/2, first-in-human trial. Lancet Oncol 2024; 25:1015-1024. [PMID: 38950555 DOI: 10.1016/s1470-2045(24)00249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Delta-like ligand 3 (DLL3) is aberrantly expressed on the surface of small-cell lung cancer (SCLC) and neuroendocrine prostate cancer cells. We assessed the safety and feasibility of the DLL3-targeted imaging tracer [89Zr]Zr-DFO-SC16.56 (composed of the anti-DLL3 antibody SC16.56 conjugated to p-SCN-Bn-deferoxamine [DFO] serving as a chelator for zirconium-89) in patients with neuroendocrine-derived cancer. METHODS We conducted an open-label, first-in-human study of immunoPET-CT imaging with [89Zr]Zr-DFO-SC16.56. The study was done at Memorial Sloan Kettering Cancer Center, New York, NY, USA. Patients aged 18 years or older with a histologically verified neuroendocrine-derived malignancy and an Eastern Cooperative Oncology Group performance status of 0-2 were eligible. An initial cohort of patients with SCLC (cohort 1) received 37-74 MBq [89Zr]Zr-DFO-SC16.56 as a single intravenous infusion at a total mass dose of 2·5 mg and had serial PET-CT scans at 1 h, day 1, day 3, and day 7 post-injection. The primary outcomes of phase 1 of the study (cohort 1) were to estimate terminal clearance half-time, determine whole organ time-integrated activity coefficients, and assess the safety of [89Zr]Zr-DFO-SC16.56. An expansion cohort of additional patients (with SCLC, neuroendocrine prostate cancer, atypical carcinoid tumours, and non-small-cell lung cancer; cohort 2) received a single infusion of [89Zr]Zr-DFO-SC16.56 at the same activity and mass dose as in the initial cohort followed by a single PET-CT scan 3-6 days later. Retrospectively collected tumour biopsy samples were assessed for DLL3 by immunohistochemistry. The primary outcome of phase 2 of the study in cohort 2 was to determine the potential association between tumour uptake of the tracer and intratumoural DLL3 protein expression, as determined by immunohistochemistry. This study is ongoing and is registered with ClinicalTrials.gov, NCT04199741. FINDINGS Between Feb 11, 2020, and Jan 30, 2023, 12 (67%) men and six (33%) women were enrolled, with a median age of 64 years (range 23-81). Cohort 1 included three patients and cohort 2 included 15 additional patients. Imaging of the three patients with SCLC in cohort 1 showed strong tumour-specific uptake of [89Zr]Zr-DFO-SC16.56 at day 3 and day 7 post-injection. Serum clearance was biphasic with an estimated terminal clearance half-time of 119 h (SD 31). The highest mean absorbed dose was observed in the liver (1·83 mGy/MBq [SD 0·36]), and the mean effective dose was 0·49 mSv/MBq (SD 0·10). In cohort 2, a single immunoPET-CT scan on day 3-6 post-administration could delineate DLL3-avid tumours in 12 (80%) of 15 patients. Tumoural uptake varied between and within patients, and across anatomical sites, with a wide range in maximum standardised uptake value (from 3·3 to 66·7). Tumour uptake by [89Zr]Zr-DFO-SC16.56 was congruent with DLL3 immunohistochemistry in 15 (94%) of 16 patients with evaluable tissue. Two patients with non-avid DLL3 SCLC and neuroendocrine prostate cancer by PET scan showed the lowest DLL3 expression by tumour immunohistochemistry. One (6%) of 18 patients had a grade 1 allergic reaction; no grade 2 or worse adverse events were noted in either cohort. INTERPRETATION DLL3 PET-CT imaging of patients with neuroendocrine cancers is safe and feasible. These results show the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in-vivo detection of DLL3-expressing malignancies. FUNDING National Institutes of Health, Prostate Cancer Foundation, and Scannell Foundation.
Collapse
Affiliation(s)
- Salomon Tendler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark P Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Agee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rania G Aly
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noura J Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Assen Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schoder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
11
|
Senkal H, Altınkaynak M, Sunnetcioglu E, Kilicaslan I, Akpinar TS. Paraneoplastic syndrome as a manifestation small cell carcinoma of the prostate: a rare presentation within a rare tumor. Intern Emerg Med 2024; 19:1383-1384. [PMID: 38472719 DOI: 10.1007/s11739-024-03574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Hilal Senkal
- Istanbul Medical Faculty, Department of Internal Medicine, Istanbul University, Istanbul, Turkey.
| | - Mustafa Altınkaynak
- Istanbul Medical Faculty, Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Ecem Sunnetcioglu
- Istanbul Medical Faculty, Department of Medical Pathology, Istanbul University, Istanbul, Turkey
| | - Isin Kilicaslan
- Istanbul Medical Faculty, Department of Medical Pathology, Istanbul University, Istanbul, Turkey
| | - Timur Selcuk Akpinar
- Istanbul Medical Faculty, Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
13
|
Hoshino Y, Kanao K, Miyama Y, Kosaka T, Kaneko G, Shirotake S, Yasuda M, Oyama M. Aggressive variant prostate cancer with multiple subcutaneous metastases: a case report. Int Cancer Conf J 2024; 13:250-255. [PMID: 38962044 PMCID: PMC11217196 DOI: 10.1007/s13691-024-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 07/05/2024] Open
Abstract
A 71-year-old man with bone metastasis of hormone-sensitive prostate cancer was treated with androgen deprivation therapy and apalutamide. Radium-223 and radiation therapy were administered after it become castration resistant. Although prostate-specific antigen levels remained low, multiple subcutaneous metastases of neuroendocrine prostate cancer were observed. A review of the pre-treatment prostate needle biopsy revealed a small component with features suggestive of neuroendocrine differentiation. Phosphatase and tensine homolog loss and tumor protein p53 overexpression were observed, confirming the diagnosis of aggressive variant prostate cancer. Platinum-based chemotherapy was administered; however, the patient died 28 months after diagnosis. In this case, if the diagnosis of aggressive variant prostate cancer had been made at an earlier time by biopsy specimens, there might have been a possibility to improve the prognosis by the earlier introduction of the platinum-based regimen. Supplementary Information The online version contains supplementary material available at 10.1007/s13691-024-00673-7.
Collapse
Affiliation(s)
- Yusuke Hoshino
- Department of Uro-Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Kent Kanao
- Department of Uro-Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Yu Miyama
- Department of Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Go Kaneko
- Department of Uro-Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Suguru Shirotake
- Department of Uro-Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| | - Masafumi Oyama
- Department of Uro-Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298 Japan
| |
Collapse
|
14
|
Goradia N, Werner S, Mullapudi E, Greimeier S, Bergmann L, Lang A, Mertens H, Węglarz A, Sander S, Chojnowski G, Wikman H, Ohlenschläger O, von Amsberg G, Pantel K, Wilmanns M. Master corepressor inactivation through multivalent SLiM-induced polymerization mediated by the oncogene suppressor RAI2. Nat Commun 2024; 15:5241. [PMID: 38898011 PMCID: PMC11187106 DOI: 10.1038/s41467-024-49488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.
Collapse
Affiliation(s)
- Nishit Goradia
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Stefan Werner
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Mildred Scheel Cancer Career Center HaTriCS4, Martinistrasse 52, 20246, Hamburg, Germany
| | - Edukondalu Mullapudi
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Sarah Greimeier
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lina Bergmann
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andras Lang
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Haydyn Mertens
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Aleksandra Węglarz
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Sander
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Gunhild von Amsberg
- Martini Clinic, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Kulac I, Roudier MP, Haffner MC. Molecular Pathology of Prostate Cancer. Clin Lab Med 2024; 44:161-180. [PMID: 38821639 DOI: 10.1016/j.cll.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Molecular profiling studies have shed new light on the complex biology of prostate cancer. Genomic studies have highlighted that structural rearrangements are among the most common recurrent alterations. In addition, both germline and somatic mutations in DNA repair genes are enriched in patients with advanced disease. Primary prostate cancer has long been known to be multifocal, but recent studies demonstrate that a large fraction of prostate cancer shows evidence of multiclonality, suggesting that genetically distinct, independently arising tumor clones coexist. Metastatic prostate cancer shows a high level of morphologic and molecular diversity, which is associated with resistance to systemic therapies. The resulting high level of intratumoral heterogeneity has important implications for diagnosis and poses major challenges for the implementation of molecular studies. Here we provide a concise review of the molecular pathology of prostate cancer, highlight clinically relevant alterations, and discuss opportunities for molecular testing.
Collapse
Affiliation(s)
- Ibrahim Kulac
- Department of Pathology, Koç University School of Medicine, Davutpasa Caddesi No:4, Istanbul 34010, Turkey
| | - Martine P Roudier
- Department of Urology, University of Washington, Northeast Pacific Street, Seattle, WA 98195, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Artamonova N, Djanani A, Schmiederer A, Pipp I, Compérat E, di Santo G, Aigner F, von der Heidt A, Heidegger I. Small cell neuroendocrine prostate cancer with adenocarcinoma components-case report and literature review. Transl Androl Urol 2024; 13:868-878. [PMID: 38855597 PMCID: PMC11157388 DOI: 10.21037/tau-23-541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 06/11/2024] Open
Abstract
Background Small cell neuroendocrine prostate cancer (SCNC) is a rare aggressive type of neuroendocrine prostate cancer (NEPC) characterized by aggressive clinical course and lack of response to hormone therapy. Case Description We present a case report of a 60-year-old man diagnosed with a histologically confirmed primary metastatic (bone, lymph nodes and visceral) SCNC with small components of an adenocarcinoma with clinical symptoms mimicking an acute prostatitis. Of note, serum based neuroendocrine markers (carcinoembryonic antigen, chromogranin A) were negative and the patient had a prostate-specific antigen (PSA) elevation. Genetic testing of tumor tissue revealed breast cancer gene 2 (BRCA2) copy number loss and a retinoblastoma gene (RB1) mutation reflecting again the aggressiveness of the disease. Germline testing for the BRCA2 copy number loss was unremarkable. After 6 cycles of carboplatin and etoposide in combination with androgen deprivation therapy (ADT) the Eastern Cooperative Oncology Group (ECOG) performance status has improved from 3 to 0, in addition the patient was free of pain. In line with clinical improvement, both prostate-specific membrane antigen (PSMA) and fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) revealed a significant reduction of metastatic load. Currently, the patient is treated with ADT plus apalutamide. Conclusions We demonstrate for the first time a case of a primary metastatic SCNC with adenocarcinoma components successfully treated by the combination of platinum-based chemotherapy plus hormonal therapy. In addition, we provide a literature overview on management of SCNC as there is no standard treatment established for this disease.
Collapse
Affiliation(s)
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Schmiederer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Iris Pipp
- Clinical Pathology and Cytodiagnostics, Tirol-Kliniken, Innsbruck, Austria
| | - Eva Compérat
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Friedrich Aigner
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
18
|
Xiao M, Tong W, Xiao X, Pu X, Yi F. Systemic metastases in large cell neuroendocrine prostate cancer: a rare case report and literature review. Front Oncol 2024; 14:1398673. [PMID: 38812779 PMCID: PMC11133593 DOI: 10.3389/fonc.2024.1398673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Neuroendocrine prostate neoplasms, encompassing small cell carcinoma, carcinoid, and large cell carcinoma, are infrequently observed in malignant prostate tumors. The occurrence of large cell neuroendocrine prostate cancer (LCNEPC) is exceedingly rare. In this study, the patient initially presented with a persistent dysuria for a duration of one year, accompanied by a serum prostate-specific antigen (PSA) level of 17.83ng/mL. Prostate magnetic resonance imaging (MRI) and chest computed tomography (CT) scan showed that a neoplastic lesion was considered, and prostate biopsy confirmed prostate adenocarcinoma with a Gleason score of 7 (4 + 3). Then, thoracoscopic lung tumor resection was performed, and the pathological examination revealed the presence of primary moderately differentiated invasive adenocarcinoma of the lung and metastatic prostate adenocarcinoma, the Gleason score was 8 (4 + 4). After 1 year of endocrine therapy with goserelin acetate and bicalutamide, he underwent a laparoscopic radical prostatectomy (LRP), the pathological report indicated the presence of adenocarcinoma mixed with NE carcinoma. Two months after the LRP, the patient experienced gross hematuria and sacral tail pain. Further examination revealed multiple metastatic lesions throughout the body. He also underwent transurethral resection of bladder tumor (TURBT) for bladder tumor and received etoposide+ cisplatin chemotherapy three weeks post-surgery. The patient eventually died of multi-organ failure due to myelosuppression after chemotherapy. This case report presents an uncommon instance of LCNEPC with widespread systemic metastases, while also providing a comprehensive review of existing literature to facilitate improved management and treatment strategies for similar patients in subsequent cases.
Collapse
Affiliation(s)
- Maolin Xiao
- Department of Urology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | | | | | | | - Faxian Yi
- Department of Urology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Wishahi M. Treatment-induced neuroendocrine prostate cancer and de novo neuroendocrine prostate cancer: Identification, prognosis and survival, genetic and epigenetic factors. World J Clin Cases 2024; 12:2143-2146. [PMID: 38808339 PMCID: PMC11129135 DOI: 10.12998/wjcc.v12.i13.2143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/10/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) shows an aggressive behavior compared to prostate cancer (PCa), also known as prostate adenocarcinoma. Scanty foci in PCa can harbor genetic alternation that can arise in a heterogeneity of prostate cancer. NEPC may arise de novo or develop following androgen deprivation therapy (ADT). NEPC that arise following ADT has the nomenclature "treatment-emerging/induced NEPC (t-NEPC)". t-NEPC would be anticipated in castration resistant prostate cancer (CRPC) and metastatic PCa. t-NEPC is characterized by low or absent androgen receptor (AR) expression, independence of AR signaling, and gain of neuroendocrine phenotype. t-NEPC is an aggressive metastatic tumor, develops from PCa in response to drug induced ADT, and shows very short response to conventional therapy. t-NEPC occurs in 10%-17% of patients with CRPC. De novo NEPC is rare and is accounting for less than 2% of all PCa. The molecular mechanisms underlying the trans-differentiation from CRPC to t-NEPC are not fully elucidated. Sphingosine kinase 1 plays a significant role in t-NEPC development. Although neuroendocrine markers: Synaptophysin, chromogranin A, and insulinoma associated protein 1 (INSM1) are expressed in t-NEPC, they are non-specific for diagnosis, prognosis, and follow-up of therapy. t-NEPC shows enriched genomic alteration in tumor protein P53 (TP53) and retinoblastoma 1 (RB1). There are evidences suggest that t-NEPC might develop through epigenetic evolution. There are genomic, epigenetic, and transcriptional alterations that are reported to be involved in development of t-NEPC. Knock-outs of TP53 and RB1 were found to contribute in development of t-NEPC. PCa is resistant to immunotherapy, and at present there are running trials to approach immunotherapy for PCa, CRPC, and t-NEPC.
Collapse
Affiliation(s)
- Mohamed Wishahi
- Department of Urology, Theodor Bilharz Research Institute, Cairo 12411, Egypt
| |
Collapse
|
20
|
Li L, Cheng S, Yeh Y, Shi Y, Henderson N, Price D, Gu X, Yu X. The expression of PKM1 and PKM2 in developing, benign, and cancerous prostatic tissues. Front Oncol 2024; 14:1392085. [PMID: 38680860 PMCID: PMC11045992 DOI: 10.3389/fonc.2024.1392085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Background Neuroendocrine prostate cancer (NEPCa) is the most aggressive type of prostate cancer (PCa). However, energy metabolism, one of the hallmarks of cancer, in NEPCa has not been well studied. Pyruvate kinase M (PKM), which catalyzes the final step of glycolysis, has two main splicing isoforms, PKM1 and PKM2. The expression pattern of PKM1 and PKM2 in NEPCa remains unknown. Methods In this study, we used immunohistochemistry, immunofluorescence staining, and bioinformatics analysis to examine the expression of PKM1 and PKM2 in mouse and human prostatic tissues. Results We found that PKM2 was the predominant isoform expressed throughout prostate development and PCa progression, with slightly reduced expression in murine NEPCa. PKM1 was mostly expressed in stromal cells but low-level PKM1 was also detected in prostate basal epithelial cells. Its expression was absent in the majority of prostate adenocarcinoma (AdPCa) specimens but present in a subset of NEPCa. Additionally, we evaluated the mRNA levels of ten PKM isoforms that express exon 9 (PKM1-like) or exon 10 (PKM2-like). Some of these isoforms showed notable expression levels in PCa cell lines and human PCa specimens. Discussion Our study characterized the expression pattern of PKM1 and PKM2 in prostatic tissues including developing, benign, and cancerous prostate. These findings lay the groundwork for understanding the metabolic changes in different PCa subtypes.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Yunshin Yeh
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA, United States
| | - Yingli Shi
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nikayla Henderson
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - David Price
- Department of Urology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xin Gu
- Department of Pathology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Urology, LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
21
|
Turnham DJ, Mullen MS, Bullock NP, Gilroy KL, Richards AE, Patel R, Quintela M, Meniel VS, Seaton G, Kynaston H, Clarkson RWE, Phesse TJ, Nelson PS, Haffner MC, Staffurth JN, Pearson HB. Development and Characterisation of a New Patient-Derived Xenograft Model of AR-Negative Metastatic Castration-Resistant Prostate Cancer. Cells 2024; 13:673. [PMID: 38667288 PMCID: PMC11049137 DOI: 10.3390/cells13080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Manisha S. Mullen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Nicholas P. Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | | | - Anna E. Richards
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Radhika Patel
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marcos Quintela
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Gillian Seaton
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Howard Kynaston
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Urology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Richard W. E. Clarkson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Peter S. Nelson
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| |
Collapse
|
22
|
Martin-Caraballo M. Regulation of Molecular Biomarkers Associated with the Progression of Prostate Cancer. Int J Mol Sci 2024; 25:4171. [PMID: 38673756 PMCID: PMC11050209 DOI: 10.3390/ijms25084171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
23
|
Giunta EF, Brighi N, Gurioli G, Matteucci F, Paganelli G, De Giorgi U. 177Lu-PSMA therapy in metastatic prostate cancer: An updated review of prognostic and predictive biomarkers. Cancer Treat Rev 2024; 125:102699. [PMID: 38422894 DOI: 10.1016/j.ctrv.2024.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
177Lu-PSMA has been approved for the treatment of PSMA-positive metastatic castration-resistant (mCRPC) patients who progressed to androgen receptor pathway inhibitors (ARPIs) and taxane-based chemotherapy. However, a higher proportion of patients do not respond to this type of radioligand therapy (RLT). To date, there is a lack of validated prognostic and predictive biomarkers for 177Lu-PSMA therapy in prostate cancer. Several studies have investigated the prognostic and predictive role of clinical and molecular factors and also the metabolic features of PET imaging. In this review, we aim to take stock of the current scenario, focusing on new emerging data from retrospective/prospective series and clinical trials. Given the high costs and the possibility of primary resistance, it seems essential to identify clinical and molecular characteristics that could allow clinicians to choose the right patient to treat with 177Lu-PSMA. Biomarker-based clinical trials are urgently needed in this field.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Federica Matteucci
- Nuclear Medicine Operative Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Paganelli
- Nuclear Medicine Operative Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
24
|
de Kouchkovsky I, Chan E, Schloss C, Poehlein C, Aggarwal R. Diagnosis and management of neuroendocrine prostate cancer. Prostate 2024; 84:426-440. [PMID: 38173302 DOI: 10.1002/pros.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Although most patients with prostate cancer (PC) respond to initial androgen deprivation therapy (ADT), castration-resistant disease invariably develops. Progression to treatment-emergent neuroendocrine PC (t-NEPC) represents a unique mechanism of resistance to androgen receptor (AR)-targeted therapy in which lineage plasticity and neuroendocrine differentiation induce a phenotypic switch from an AR-driven adenocarcinoma to an AR-independent NEPC. t-NEPC is characterized by an aggressive clinical course, increased resistance to AR-targeted therapies, and a poor overall prognosis. METHODS This review provides an overview of our current knowledge of NEPC, with a focus on the unmet needs, diagnosis, and clinical management of t-NEPC. RESULTS Evidence extrapolated from the literature on small cell lung cancer or data from metastatic castration-resistant PC (mCRPC) cohorts enriched for t-NEPC suggests an increased sensitivity to platinum-based chemotherapy. However, optimal strategies for managing t-NEPC have not been established, and prospective clinical trial data are limited. Intertumoral heterogeneity within a given patient, as well as the lack of robust molecular or clinical biomarkers for early detection, often lead to delays in diagnosis and prolonged treatment with suboptimal strategies (i.e., conventional chemohormonal therapies for mCRPC), which may further contribute to poor outcomes. CONCLUSIONS Recent advances in genomic and molecular classification of NEPC and the development of novel biomarkers may facilitate an early diagnosis, help to identify promising therapeutic targets, and improve the selection of patients most likely to benefit from NEPC-targeted therapies.
Collapse
Affiliation(s)
- Ivan de Kouchkovsky
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| | - Emily Chan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | | | | | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Morote J, Borque-Fernando Á, Esteban LE, Picola N, Muñoz-Rodriguez J, Paesano N, Ruiz-Plazas X, Muñoz-Rivero MV, Celma A, García-de Manuel G, Miró B, Abascal JM, Servian P. Reducing the demand for magnetic resonance imaging scans and prostate biopsies during the early detection of clinically significant prostate cancer: Applying the Barcelona risk-stratified pathway in Catalonia. Urol Oncol 2024; 42:115.e1-115.e7. [PMID: 38342654 DOI: 10.1016/j.urolonc.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 02/13/2024]
Abstract
PURPOSE To analyze the reduction in multiparametric magnetic resonance imaging (mpMRI) demand and prostate biopsies after the hypothetical implementation of the Barcelona risk-stratified pathway (BCN-RSP) in a population of the clinically significant prostate cancer (csCaP) early detection program in Catalonia. MATERIALS AND METHODS A retrospective comparation between the hypothetical application of the BCN-RSP and the current pathway, which relied on pre-biopsy mpMRI and targeted and/or systematic biopsies, was conducted. The BCN-RSP stratify men with suspected CaP based on a prostate specific antigen (PSA) level >10 ng/ml and a suspicious rectal examination (DRE), and the Barcelona-risk calculator 1 (BCN-RC1) to avoid mpMRI scans. Subsequently, candidates for prostate biopsy following mpMRI are selected based on the BCN-RC2. This comparison involved 3,557 men with serum PSA levels > 3.0 ng/ml and/or suspicious DRE. The population was recruited prospectively in 10 centers from January 2021 and December 2022. CsCaP was defined when grade group ≥ 2. RESULTS CsCaP was detected in 1,249 men (35.1%) and insignificant CaP was overdeteced in 498 (14%). The BCN-RSP would have avoid 705 mpMRI scans (19.8%), and 697 prostate biopsies (19.6%), while 61 csCaP (4.9%) would have been undetected. The overdetection of insignificant CaP would have decrease in 130 cases (26.1%), and the performance of prostate biopsy for csCaP detection would have increase to 41.5%. CONCLUSION The application of the BCN-RSP would reduce the demand for mpMRI scans and prostate biopsies by one fifth while less than 5% of csCaP would remain undetected. The overdetection of insignificant CaP would decrease by more than one quarter and the performance of prostate biopsy for csCaP detection would increase to higher than 40%.
Collapse
Affiliation(s)
- Juan Morote
- Department of Urology, Vall d´Hebron Hospital, and Department of Surgery, Universitat Autònoma de Barcelona, Barcelona Spain.
| | | | - Luis E Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica La Almunia, Universidad de Zaragoza, Zaragoza, Spain
| | - Natàlia Picola
- Department of Urology, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain
| | | | | | - Xavier Ruiz-Plazas
- Department of Urology, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | - Anna Celma
- Department of Urology, Vall d´Hebron Hospital, and Department of Surgery, Universitat Autònoma de Barcelona, Barcelona Spain
| | | | - Berta Miró
- Unit of Statistics and Bioinformatics. Vall d´Hebron Reseach Institute, Barcelona, Spain
| | - José M Abascal
- Department of Urology, Parc de Salut Mar, and Department of Surgery, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pol Servian
- Department of Urology, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
26
|
Liu S, Nam HS, Zeng Z, Deng X, Pashaei E, Zang Y, Yang L, Li C, Huang J, Wendt MK, Lu X, Huang R, Wan J. CDHu40: a novel marker gene set of neuroendocrine prostate cancer (NEPC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587205. [PMID: 38585861 PMCID: PMC10996696 DOI: 10.1101/2024.03.28.587205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen (PSA) levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor (AR) signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction (PPI) networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named as CDHu40, demonstrated superior performance in distinguishing NE prostate cancer (NEPC) and non-NEPC samples based on gene expression profiles compared to other published marker sets. Notably, some novel marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression. Significance our study integrates gene expression variances in multiple NEPC studies and protein-protein interaction network to pinpoint a specific set of NEPC maker genes namely CDHu40. These genes and scores based on their gene expression levels effectively distinguish NEPC samples and underscore the clinical prognostic significance and potential mechanism.
Collapse
|
27
|
Bernal A, Bechler AJ, Mohan K, Rizzino A, Mathew G. The Current Therapeutic Landscape for Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:351. [PMID: 38543137 PMCID: PMC10974045 DOI: 10.3390/ph17030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
In 2024, there will be an estimated 1,466,718 cases of prostate cancer (PC) diagnosed globally, of which 299,010 cases are estimated to be from the US. The typical clinical approach for PC involves routine screening, diagnosis, and standard lines of treatment. However, not all patients respond to therapy and are subsequently diagnosed with treatment emergent neuroendocrine prostate cancer (NEPC). There are currently no approved treatments for this form of aggressive PC. In this review, a compilation of the clinical trials regimen to treat late-stage NEPC using novel targets and/or a combination approach is presented. The novel targets assessed include DLL3, EZH2, B7-H3, Aurora-kinase-A (AURKA), receptor tyrosine kinases, PD-L1, and PD-1. Among these, the trials administering drugs Alisertib or Cabozantinib, which target AURKA or receptor tyrosine kinases, respectively, appear to have promising results. The least effective trials appear to be ones that target the immune checkpoint pathways PD-1/PD-L1. Many promising clinical trials are currently in progress. Consequently, the landscape of successful treatment regimens for NEPC is extremely limited. These trial results and the literature on the topic emphasize the need for new preventative measures, diagnostics, disease specific biomarkers, and a thorough clinical understanding of NEPC.
Collapse
Affiliation(s)
- Anastasia Bernal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Alivia Jane Bechler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Kabhilan Mohan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Grinu Mathew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
28
|
Nguyen N, Franz RD, Mohammed O, Huynh R, Son CK, Khan RN, Ahmed B. A systematic review of primary large cell neuroendocrine carcinoma of the prostate. Front Oncol 2024; 14:1341794. [PMID: 38515575 PMCID: PMC10955467 DOI: 10.3389/fonc.2024.1341794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
Background Large cell neuroendocrine carcinoma (LCNEC) is a rare subtype of prostate cancer. The pathogenesis, clinical manifestation, treatment options, and prognosis are uncertain and underreported. Materials and methods A systematic search was conducted in April 2022 through PubMed, Embase, and Cochrane. We reviewed cases of LCNEC developed either from de novo or transformation from prostate adenocarcinoma and summarized the relevant pathophysiological course, treatment options, and outcomes. Results A total of 25 patients with a mean age of 70.4 (range 43 87 years old) from 18 studies were included in this review. 13 patients were diagnosed with de novo LCNEC of the prostate. 12 patients were from the transformation of adenocarcinoma post-hormonal therapy treatment. Upon initial diagnosis, patients diagnosed with de novo prostatic LCNEC had a mean serum PSA value of 24.6 ng/ml (range: 0.09-170 ng/ml, median 5.5 ng/ml), while transformation cases were significantly lower at 3.3 ng/ml (range: 0-9.3 ng/ml, median 0.05 ng/ml). The pattern of metastasis closely resembles prostate adenocarcinoma. Six out of twenty-three cases displayed brain metastasis matching the correlation between neuroendocrine tumors and brain metastasis. Three notable paraneoplastic syndromes included Cushings syndrome, dermatomyositis, and polycythemia. Most patients with advanced metastatic disease received conventional platinum-based chemotherapy with a mean survival of 5 months. There was one exception in the transformation cohort with a somatic BRCA2 mutation who was treated with a combination of M6620 and platinum-based chemotherapy with an impressive PFS of 20 months. Patients with pure LCNEC phenotype have worse survival outcomes when compared to those with mixed LCNEC and adenocarcinoma phenotypes. It is unclear whether there is a survival benefit to administering ADT in pure pathologies. Conclusion LCNEC of the prostate is a rare disease that can occur de novo or transformation from prostatic adenocarcinoma. Most patients present at an advanced stage with poor prognosis and are treated with conventional chemotherapy regimens. Patients who had better outcomes were those who were diagnosed at an early stage and received treatment with surgery or radiation and androgen deprivation therapy (ADT). There was one case with an exceptional outcome that included a treatment regimen of M6620 and chemotherapy.
Collapse
Affiliation(s)
- Ngan Nguyen
- Hematology and Medical Oncology, The Oncology Institute of Hope and Innovation, Riverside, CA, United States
| | - Ronald Dean Franz
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Omar Mohammed
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Richard Huynh
- Department of Internal Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Christine Kim Son
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Rida Nusrat Khan
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Bilawal Ahmed
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
29
|
Moon D, Hauck JS, Jiang X, Quang H, Xu L, Zhang F, Gao X, Wild R, Everitt JI, Macias E, He Y, Huang J. Targeting glutamine dependence with DRP-104 inhibits proliferation and tumor growth of castration-resistant prostate cancer. Prostate 2024; 84:349-357. [PMID: 38084059 PMCID: PMC10872917 DOI: 10.1002/pros.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Prostate cancer (PCa) continues to be one of the leading causes of cancer deaths in men. While androgen deprivation therapy is initially effective, castration-resistant PCa (CRPC) often recurs and has limited treatment options. Our previous study identified glutamine metabolism to be critical for CRPC growth. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) blocks both carbon and nitrogen pathways but has dose-limiting toxicity. The prodrug DRP-104 is expected to be preferentially converted to DON in tumor cells to inhibit glutamine utilization with minimal toxicity. However, CRPC cells' susceptibility to DRP-104 remains unclear. METHODS Human PCa cell lines (LNCaP, LAPC4, C4-2/MDVR, PC-3, 22RV1, NCI-H660) were treated with DRP-104, and effects on proliferation and cell death were assessed. Unbiased metabolic profiling and isotope tracing evaluated the effects of DRP-104 on glutamine pathways. Efficacy of DRP-104 in vivo was evaluated in a mouse xenograft model of neuroendocrine PCa, NCI-H660. RESULTS DRP-104 inhibited proliferation and induced apoptosis in CRPC cell lines. Metabolite profiling showed decreases in the tricarboxylic acid cycle and nucleotide synthesis metabolites. Glutamine isotope tracing confirmed the blockade of both carbon pathway and nitrogen pathways. DRP-104 treated CRPC cells were rescued by the addition of nucleosides. DRP-104 inhibited neuroendocrine PCa xenograft growth without detectable toxicity. CONCLUSIONS The prodrug DRP-104 blocks glutamine carbon and nitrogen utilization, thereby inhibiting CRPC growth and inducing apoptosis. Targeting glutamine metabolism pathways with DRP-104 represents a promising therapeutic strategy for CRPC.
Collapse
Affiliation(s)
- David Moon
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Quang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lingfan Xu
- Urology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xia Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, California, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yiping He
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
30
|
Franceschini GM, Quaini O, Mizuno K, Orlando F, Ciani Y, Ku SY, Sigouros M, Rothmann E, Alonso A, Benelli M, Nardella C, Auh J, Freeman D, Hanratty B, Adil M, Elemento O, Tagawa ST, Feng FY, Caffo O, Buttigliero C, Basso U, Nelson PS, Corey E, Haffner MC, Attard G, Aparicio A, Demichelis F, Beltran H. Noninvasive Detection of Neuroendocrine Prostate Cancer through Targeted Cell-free DNA Methylation. Cancer Discov 2024; 14:424-445. [PMID: 38197680 PMCID: PMC10905672 DOI: 10.1158/2159-8290.cd-23-0754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Gian Marco Franceschini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Orsetta Quaini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francesco Orlando
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Sigouros
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Emily Rothmann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alicia Alonso
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | | | - Caterina Nardella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Joonghoon Auh
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian Hanratty
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mohamed Adil
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Scott T. Tagawa
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Umberto Basso
- Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Eva Corey
- University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Gerhardt Attard
- Cancer Institute and University College London Hospitals, University College London, London, United Kingdom
| | - Ana Aparicio
- Department of GU Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
31
|
Gopalan A. Treatment-related Neuroendocrine Prostate Carcinoma-Diagnostic and Molecular Correlates. Adv Anat Pathol 2024; 31:70-79. [PMID: 38223983 DOI: 10.1097/pap.0000000000000431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Treatment-related neuroendocrine prostate cancer is a distinctive category of prostate cancer that arises after intensive suppression of the androgen receptor by next-generation therapeutic inhibition of androgen receptor signaling. The biological processes that set in motion the series of events resulting in transformation of adenocarcinoma to neuroendocrine carcinoma include genomic (loss of tumor suppressors TP53 and RB1, amplification of oncogenes N-MYC and Aurora Kinase A, dysregulation of transcription factors SOX2, achaete-scute-homolog 1, and others) as well as epigenomic (DNA methylation, EZH2 overexpression, and others). Pathologic diagnosis is key to effective therapy for this disease, and this is aided by localizing metastatic lesions for biopsy using radioligand imaging in the appropriate clinical context. As our understanding of biology evolves, there has been increased morphologic recognition and characterization of tumor phenotypes that are present in this advanced post-treatment setting. New and promising biomarkers (delta-like ligand 3 and others) have been discovered, which opens up novel therapeutic avenues including immunotherapy and antibody-drug conjugates for this lethal disease with currently limited treatment options.
Collapse
|
32
|
Kouroukli O, Bravou V, Giannitsas K, Tzelepi V. Tissue-Based Diagnostic Biomarkers of Aggressive Variant Prostate Cancer: A Narrative Review. Cancers (Basel) 2024; 16:805. [PMID: 38398199 PMCID: PMC10887410 DOI: 10.3390/cancers16040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly men, characterized by great heterogeneity in its clinical course, ranging from an indolent to a highly aggressive disease. The aggressive variant of prostate cancer (AVPC) clinically shows an atypical pattern of disease progression, similar to that of small cell PC (SCPC), and also shares the chemo-responsiveness of SCPC. The term AVPC does not describe a specific histologic subtype of PC but rather the group of tumors that, irrespective of morphology, show an aggressive clinical course, dictated by androgen receptor (AR) indifference. AR indifference represents an adaptive response to androgen deprivation therapy (ADT), driven by epithelial plasticity, an inherent ability of tumor cells to adapt to their environment by changing their phenotypic characteristics in a bi-directional way. The molecular profile of AVPC entails combined alterations in the tumor suppressor genes retinoblastoma protein 1 (RB1), tumor protein 53 (TP53), and phosphatase and tensin homolog (PTEN). The understanding of the biologic heterogeneity of castration-resistant PC (CRPC) and the need to identify the subset of patients that would potentially benefit from specific therapies necessitate the development of prognostic and predictive biomarkers. This review aims to discuss the possible pathophysiologic mechanisms of AVPC development and the potential use of emerging tissue-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, Evaggelismos General Hospital, 10676 Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
33
|
Wise DR, Pachynski RK, Denmeade SR, Aggarwal RR, Deng J, Febles VA, Balar AV, Economides MP, Loomis C, Selvaraj S, Haas M, Kagey MH, Newman W, Baum J, Troxel AB, Griglun S, Leis D, Yang N, Aranchiy V, Machado S, Waalkes E, Gargano G, Soamchand N, Puranik A, Chattopadhyay P, Fedal E, Deng FM, Ren Q, Chiriboga L, Melamed J, Sirard CA, Wong KK. A Phase 1/2 multicenter trial of DKN-01 as monotherapy or in combination with docetaxel for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00798-z. [PMID: 38341461 DOI: 10.1038/s41391-024-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Dickkopf-related protein 1 (DKK1) is a Wingless-related integrate site (Wnt) signaling modulator that is upregulated in prostate cancers (PCa) with low androgen receptor expression. DKN-01, an IgG4 that neutralizes DKK1, delays PCa growth in pre-clinical DKK1-expressing models. These data provided the rationale for a clinical trial testing DKN-01 in patients with metastatic castration-resistant PCa (mCRPC). METHODS This was an investigator-initiated parallel-arm phase 1/2 clinical trial testing DKN-01 alone (monotherapy) or in combination with docetaxel 75 mg/m2 (combination) for men with mCRPC who progressed on ≥1 AR signaling inhibitors. DKK1 status was determined by RNA in-situ expression. The primary endpoint of the phase 1 dose escalation cohorts was the determination of the recommended phase 2 dose (RP2D). The primary endpoint of the phase 2 expansion cohorts was objective response rate by iRECIST criteria in patients treated with the combination. RESULTS 18 pts were enrolled into the study-10 patients in the monotherapy cohorts and 8 patients in the combination cohorts. No DLTs were observed and DKN-01 600 mg was determined as the RP2D. A best overall response of stable disease occurred in two out of seven (29%) evaluable patients in the monotherapy cohort. In the combination cohort, five out of seven (71%) evaluable patients had a partial response (PR). A median rPFS of 5.7 months was observed in the combination cohort. In the combination cohort, the median tumoral DKK1 expression H-score was 0.75 and the rPFS observed was similar between patients with DKK1 H-score ≥1 versus H-score = 0. CONCLUSION DKN-01 600 mg was well tolerated. DKK1 blockade has modest anti-tumor activity as a monotherapy for mCRPC. Anti-tumor activity was observed in the combination cohorts, but the response duration was limited. DKK1 expression in the majority of mCRPC is low and did not clearly correlate with anti-tumor activity of DKN-01 plus docetaxel.
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rahul R Aggarwal
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Victor Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- New York Harbor Veterans Healthcare System, New York, NY, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Minas P Economides
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | - Shanmugapriya Selvaraj
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | | | | | | | - Jason Baum
- Leap Therapeutics, Inc, Cambridge, MA, USA
| | - Andrea B Troxel
- Division of Biostatistics, Department of Population Health at NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Griglun
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dayna Leis
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nina Yang
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Viktoriya Aranchiy
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sabrina Machado
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Erika Waalkes
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gabrielle Gargano
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nadia Soamchand
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Amrutesh Puranik
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Pratip Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Ezeddin Fedal
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
34
|
Economides MP, Nakazawa M, Lee JW, Li X, Hollifield L, Chambers R, Sarfaty M, Goldberg JD, Antonarakis ES, Wise DR. Case Series of Men with the Germline APC I1307K variant and Treatment-Emergent Neuroendocrine Prostate Cancer. Clin Genitourin Cancer 2024; 22:e31-e37.e1. [PMID: 37482523 DOI: 10.1016/j.clgc.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Somatic mutations in the Wnt signaling gene Adenomatous Polyposis Coli (APC) promote metastatic prostate cancer (PCa) progression. Less is known regarding the impact of germline APC mutations on PCa outcomes. We sought to investigate the prevalence of aggressive variant PCa (AVPC) and treatment-emergent neuroendocrine PCa (t-NEPC) in patients with the germline APC I1307K variant, an alteration found in 7% of Ashkenazi Jewish men. MATERIALS AND METHODS We report a retrospective cohort study comparing patients with PCa and either APC I1307K germline mutation, APC somatic mutations, or unselected patients. Proportions of patients with AVPC among all the cases were estimated along with 95% Clopper-Pearson exact confidence intervals (CI). Odds ratios with 95% CI were provided for the prevalence of t-NEPC and AVPC in patients with germline APC I1307K compared to patients with frameshift alterations in APC. RESULTS From 2016-2022, 18 patients with PCa at 3 institutions with the germline APC (I1307K) mutation were identified. Clinically-defined AVPC was found in 8 of the 15 cases with metastatic disease (53%; 95% CI: 26%-79%). Combined somatic alterations in two or more of RB1, TP53 or PTEN (molecularly-defined AVPC) were found in 5/18 cases (28%; 95% CI: 10%-54%). When compared to 20 patients with APC somatic frameshift mutations, patients with the germline APC I1307K variant had a significantly increased risk of AVPC (OR 7.2; 95% CI 1.27, 40.68). CONCLUSION PCa that develops in the presence of the germline APC I1307K mutation appear to be enriched for clinically-defined and molecularly-defined AVPC and in particular, for t-NEPC.
Collapse
Affiliation(s)
- Minas P Economides
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Mari Nakazawa
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Jonathan W Lee
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Xiaochun Li
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine and Biostatistics Shared Resource, NYU Perlmutter Cancer Center, New York, NY
| | - Lucas Hollifield
- Department of Genetics, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Rachelle Chambers
- Department of Genetics, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Michal Sarfaty
- Sheba Medical Center, Institute of Oncology, Israel Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - Judith D Goldberg
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine and Biostatistics Shared Resource, NYU Perlmutter Cancer Center, New York, NY
| | | | - David R Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY.
| |
Collapse
|
35
|
Tendler S, Dunphy MP, Agee M, O’Donoghue J, Aly RG, Choudhury NJ, Kesner A, Kirov A, Mauguen A, Baine MK, Schoder H, Weber WA, Rekhtman N, Lyashchenko SK, Bodei L, Morris MJ, Lewis JS, Rudin CM, Poirier JT. First-in-human imaging with [ 89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumors of the lung and prostate. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301109. [PMID: 38260492 PMCID: PMC10802659 DOI: 10.1101/2024.01.10.24301109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Delta-like ligand 3 (DLL3) is aberrantly expressed on the cell surface in many neuroendocrine cancers including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (NEPC). Several therapeutic agents targeting DLL3 are in active clinical development. Molecular imaging of DLL3 would enable non-invasive diagnostic assessment to inform the use of DLL3-targeting therapeutics or to assess disease treatment response. Methods We conducted a first-in-human immuno-positron emission tomography (immunoPET) imaging study of [89Zr]Zr-DFO-SC16.56, composed of the anti-DLL3 antibody SC16.56 conjugated to desferrioxamine (DFO) and the positron-emitting radionuclide zirconium-89, in 18 patients with neuroendocrine cancers. An initial cohort of three patients received 1-2 mCi of [89Zr]Zr-DFO-SC16.56 at a total mass dose of 2·5 mg and underwent serial PET and computed tomography (CT) imaging over the course of one week. Radiotracer clearance, tumor uptake, and radiation dosimetry were estimated. An expansion cohort of 15 additional patients were imaged using the initial activity and mass dose. Retrospectively collected tumor biopsies were assessed for DLL3 by immunohistochemistry (IHC) (n = 16). Findings Imaging of the initial 3 SCLC patients demonstrated strong tumor-specific uptake of [89Zr]Zr-DFO-SC16.56, with similar tumor: background ratios at days 3, 4, and 7 post-injection. Serum clearance was bi-phasic with an estimated terminal clearance half-time of 119 h. The sites of highest background tracer uptake were blood pool and liver. The normal tissue receiving the highest radiation dose was liver; 1·8 mGy/MBq, and the effective dose was 0.49 mSv/MBq. Tumoral uptake varied both between and within patients, and across anatomic sites, with a wide range in SUVmax (from 3·3 to 66·7). Tumor uptake by [89Zr]Zr-DFO-SC16.56 was associated with protein expression in all cases. Two non-avid DLL3 NEPC cases by PET scanning demonstrated the lowest DLL3 expression by tumor immunohistochemistry. Only one patient had a grade 1 allergic reaction, while no grade ≥2 adverse events noted. Interpretation DLL3 PET imaging of patients with neuroendocrine cancers is safe and feasible. These results demonstrate the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in vivo detection of DLL3-expressing malignancies. Funding Supported by NIH R01CA213448 (JTP), R35 CA263816 (CMR), U24 CA213274 (CMR), R35 CA232130 (JSL), and a Prostate Cancer Foundation TACTICAL Award (JSL), Scannell foundation. The Radiochemistry and Molecular Imaging Probes Core Facility is supported by NIH P30 CA08748.
Collapse
Affiliation(s)
- Salomon Tendler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark P. Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew Agee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph O’Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rania G. Aly
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Assen Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Audrey Mauguen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Marina K. Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heiko Schoder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Nuclear Medicine. School of Medicine and Health. Technical University of Munich
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - John T. Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Catalano M, Lapucci A, Nobili S, De Gennaro Aquino I, Vascotto IA, Antonuzzo L, Villari D, Nesi G, Mini E, Roviello G. Platinum-based chemotherapy in metastatic prostate cancer: what possibilities? Cancer Chemother Pharmacol 2024; 93:1-9. [PMID: 37934252 PMCID: PMC10796584 DOI: 10.1007/s00280-023-04604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Metastatic prostate cancer is a major health burden worldwide, necessitating the continuous development of effective treatment strategies. Androgen deprivation therapy remains the cornerstone of prostate cancer treatment, but novel approaches are needed for metastatic castration-resistant prostate cancer (mCRPC). Recent studies have highlighted the prevalence of mutations in DNA repair genes, including BRCA1 and BRCA2, in mCRPC patients, rendering them more susceptible to platinum-based chemotherapy and Poly (ADP-ribose) polymerase (PARP) inhibitors. Platinum-based chemotherapy, particularly in combination with taxanes, has demonstrated encouraging activity in mCRPC, as well as homologous recombination gene alterations have shown increased sensitivity to platinum compounds in these patients. The combination of platinum-based chemotherapy with PARP inhibitors represents a novel and potentially effective therapeutic strategy for this subgroup of patients. However, the optimal sequence of administering these agents and the potential for cross-resistance and cross-toxicities remain areas requiring further investigation. Prospective randomized studies are essential to elucidate the most effective treatment approach for this challenging patient population. This review aims to explore the potential of platinum-based chemotherapy in the context of prostate cancer, and more in detail in homologous recombination repair (HRR) mutated patients. We discuss the synergistic effects of combining platinum compounds with PARP inhibitors and the potential benefits of adopting specific therapeutic sequences.
Collapse
Affiliation(s)
- Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy.
- University of Florence, Viale Pieraccini 6, 50134, Florence, FI, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139, Florence, Italy
| | | | | | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, 50139, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| |
Collapse
|
37
|
Menssouri N, Poiraudeau L, Helissey C, Bigot L, Sabio J, Ibrahim T, Pobel C, Nicotra C, Ngo-Camus M, Lacroix L, Rouleau E, Tselikas L, Chauchereau A, Blanc-Durand F, Bernard-Tessier A, Patrikidou A, Naoun N, Flippot R, Colomba E, Fuerea A, Albiges L, Lavaud P, van de Wiel P, den Biezen E, Wesseling-Rozendaal Y, Ponce S, Michiels S, Massard C, Gautheret D, Barlesi F, André F, Besse B, Scoazec JY, Friboulet L, Fizazi K, Loriot Y. Genomic Profiling of Metastatic Castration-Resistant Prostate Cancer Samples Resistant to Androgen Receptor Pathway Inhibitors. Clin Cancer Res 2023; 29:4504-4517. [PMID: 37364000 DOI: 10.1158/1078-0432.ccr-22-3736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The androgen receptor axis inhibitors (ARPI; e.g., enzalutamide, abiraterone acetate) are administered in daily practice for men with metastatic castration-resistant prostate cancer (mCRPC). However, not all patients respond, and mechanisms of both primary and acquired resistance remain largely unknown. EXPERIMENTAL DESIGN In the prospective trial MATCH-R (NCT02517892), 59 patients with mCRPC underwent whole-exome sequencing (WES) and/or RNA sequencing (RNA-seq) of samples collected before starting ARPI. Also, 18 patients with mCRPC underwent biopsy at time of resistance. The objectives were to identify genomic alterations associated with resistance to ARPIs as well as to describe clonal evolution. Associations of genomic and transcriptomic alterations with primary resistance were determined using Wilcoxon and Fisher exact tests. RESULTS WES analysis indicated that no single-gene genomic alterations were strongly associated with primary resistance. RNA-seq analysis showed that androgen receptor (AR) gene alterations and expression levels were similar between responders and nonresponders. RNA-based pathway analysis found that patients with primary resistance had a higher Hedgehog pathway score, a lower AR pathway score and a lower NOTCH pathway score than patients with a response. Subclonal evolution and acquisition of new alterations in AR-related genes or neuroendocrine differentiation are associated with acquired resistance. ARPIs do not induce significant changes in the tumor transcriptome of most patients; however, programs associated with cell proliferation are enriched in resistant samples. CONCLUSIONS Low AR activity, activation of stemness programs, and Hedgehog pathway were associated with primary ARPIs' resistance, whereas most acquired resistance was associated with subclonal evolution, AR-related events, and neuroendocrine differentiation. See related commentary by Slovin, p. 4323.
Collapse
Affiliation(s)
- Naoual Menssouri
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Loïc Poiraudeau
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | | | - Ludovic Bigot
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Jonathan Sabio
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Tony Ibrahim
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Cédric Pobel
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Maud Ngo-Camus
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ludovic Lacroix
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Etienne Rouleau
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Anne Chauchereau
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Félix Blanc-Durand
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Anna Patrikidou
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Emeline Colomba
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alina Fuerea
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pernelle Lavaud
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | | | - Santiago Ponce
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Stefan Michiels
- Oncostat U1018, Inserm, University of Paris-Saclay, Labelled Ligue Contre le Cancer, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Gautheret
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabrice Barlesi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Fabrice André
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Karim Fizazi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
38
|
Hong YC, Hu TY, Hsu CS, Yeh WW, Wong WZ, Shen TW, Chang CH, Hua K, Tung CY, Peng YC, Huang WJ, Chang PC, Lin TP. Single-cell analysis of castration-resistant prostate cancers to identify potential biomarkers for diagnosis and prognosis of neuroendocrine prostate cancer. Am J Cancer Res 2023; 13:4560-4578. [PMID: 37970364 PMCID: PMC10636664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023] Open
Abstract
The high heterogeneity and low percentage of neuroendocrine cells in prostate cancer limit the utility of traditional bulk RNA sequencing and even single-cell RNA sequencing to find better biomarkers for early diagnosis and stratification. Re-clustering of specific cell-type holds great promise for identification of intra-cell-type heterogeneity. However, this has not yet been used in studying neuroendocrine prostate cancer heterogeneity. Neuroendocrine cluster(s) were individually identified in each castration-resistant prostate cancer specimen and combined for trajectory analysis. Three neuroendocrine states were identified. Neuroendocrine state 2 with the highest AR score was considered the initial starting state of neuroendocrine transdifferentiation. State 1 and state 3 with distinct high neuroendocrine scores and marker genes enriched in N-Myc and REST target genes, respectively, were considered as two different types of neuroendocrine differentiated cancer cells. These two states contained distinct groups of prostate cancer biomarkers and a strong distinguishing ability of normal versus cancerous prostate across different pathological grading was found in the N-Myc-associated state. Our data highlight the central role of N-Myc and REST in mediating lineage plasticity and classifying neuroendocrine phenotypes.
Collapse
Affiliation(s)
- Yung-Chih Hong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Tze-Yun Hu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Chih-Sin Hsu
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Wei-Ze Wong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Tsai-Wen Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Ching-Hsin Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Medical University HospitalTaipei 11031, Taiwan
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Yu-Ching Peng
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - William J Huang
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Tzu-Ping Lin
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| |
Collapse
|
39
|
Gulliver C, Huss S, Semjonow A, Baillie GS, Hoffmann R. Loss of PDE4D7 expression promotes androgen independence, neuroendocrine differentiation and alterations in DNA repair: implications for therapeutic strategies. Br J Cancer 2023; 129:1462-1476. [PMID: 37740039 PMCID: PMC10628190 DOI: 10.1038/s41416-023-02417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Androgen signalling remains the seminal therapeutic approach for the management of advanced prostate cancer. However, most tumours eventually shift towards an aggressive phenotype, characterised by androgen independence and treatment resistance. The cyclic adenosine monophosphate (cAMP) pathway plays a crucial role in regulating various cellular processes, with the phosphodiesterase PDE4D7 being a vital modulator of cAMP signalling in prostate cancer cells. METHODS Using shRNA-mediated PDE4D7 knockdown in LNCaP cells and downstream analysis via RNA sequencing and phenotypic assays, we replicate clinical observations that diminished PDE4D7 expression promotes an aggressive prostate cancer phenotype. RESULTS Our study provides evidence that loss of PDE4D7 expression represents a pivotal switch driving the transition from an androgen-sensitive state to hormone unresponsiveness and neuroendocrine differentiation. In addition, we demonstrate that PDE4D7 loss affects DNA repair pathways, conferring resistance to poly ADP ribose polymerase (PARP) inhibitors. CONCLUSION Reinstating PDE4D7 expression sensitises prostate cancer cells to anti-androgens, DNA damage response inhibitors, and cytotoxic therapies. These findings provide significant insight into the regulatory role of PDE4D7 in the development of lethal prostate cancer and the potential of its modulation as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chloe Gulliver
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
| | - Sebastian Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149, Münster, Germany
| | - Axel Semjonow
- Prostate Center, University Hospital Münster, 48149, Münster, Germany
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK
| | - Ralf Hoffmann
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
- Oncology Solutions, Philips Research Europe, High Tech Campus 34, 5656AE, Eindhoven, The Netherlands.
| |
Collapse
|
40
|
Weng XT, Lin WL, Pan QM, Chen TF, Li SY, Gu CM. Aggressive variant prostate cancer: A case report and literature review. World J Clin Cases 2023; 11:6213-6222. [PMID: 37731555 PMCID: PMC10507546 DOI: 10.12998/wjcc.v11.i26.6213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Aggressive variant prostate cancer (AVPC) is a rare disease that progresses rapidly. The first-line treatment for AVPC is currently unknown. We examined a rare case of AVPC with rare brain and bladder metastases. A summary review of the mechanism of development, clinicopathological manifestations, associated treatments and prognosis of this disease is presented. CASE SUMMARY The patient was diagnosed with prostate cancer (PCA), and was actively treated with endocrine therapy, radiotherapy, chemotherapy, and traditional Chinese medicine. Unfortunately, he was insensitive to treatment, and the disease progressed rapidly. He died five years after being diagnosed with PCA. CONCLUSION We should reach consensus definitions of the AVPC and other androgen receptor-independent subtypes of PCA and develop new biomarkers to identify groups of high-risk variants. It is crucial to complete a puncture biopsy of the tumor or metastatic lesion as soon as possible in patients with advanced PCA who exhibit clinical features such as low Prostate-specific antigen levels, high carcinoembryonic antigen levels, and insensitivity to hormones to determine the pathological histological type and to create a more aggressive monitoring and treatment regimens.
Collapse
Affiliation(s)
- Xiang-Tao Weng
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Wen-Li Lin
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Qi-Man Pan
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Tao-Fen Chen
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Si-Yi Li
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Chi-Ming Gu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
41
|
Mohanty SK, Lobo A, Williamson SR, Shah RB, Trpkov K, Varma M, Sirohi D, Aron M, Kandukari SR, Balzer BL, Luthringer DL, Ro J, Osunkoya AO, Desai S, Menon S, Nigam LK, Sardana R, Roy P, Kaushal S, Midha D, Swain M, Ambekar A, Mitra S, Rao V, Soni S, Jain K, Diwaker P, Pattnaik N, Sharma S, Chakrabarti I, Sable M, Jain E, Jain D, Samra S, Vankalakunti M, Mohanty S, Parwani AV, Sancheti S, Kumari N, Jha S, Dixit M, Malik V, Arora S, Munjal G, Gopalan A, Magi-Galluzzi C, Dhillon J. Reporting Trends, Practices, and Resource Utilization in Neuroendocrine Tumors of the Prostate Gland: A Survey among Thirty-Nine Genitourinary Pathologists. Int J Surg Pathol 2023; 31:993-1005. [PMID: 35946087 DOI: 10.1177/10668969221116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuroendocrine differentiation in the prostate gland ranges from clinically insignificant neuroendocrine differentiation detected with markers in an otherwise conventional prostatic adenocarcinoma to a lethal high-grade small/large cell neuroendocrine carcinoma. The concept of neuroendocrine differentiation in prostatic adenocarcinoma has gained considerable importance due to its prognostic and therapeutic ramifications and pathologists play a pivotal role in its recognition. However, its awareness, reporting, and resource utilization practice patterns among pathologists are largely unknown. Methods. Representative examples of different spectrums of neuroendocrine differentiation along with a detailed questionnaire were shared among 39 urologic pathologists using the survey monkey software. Participants were specifically questioned about the use and awareness of the 2016 WHO classification of neuroendocrine tumors of the prostate, understanding of the clinical significance of each entity, and use of different immunohistochemical (IHC) markers. De-identified respondent data were analyzed. Results. A vast majority (90%) of the participants utilize IHC markers to confirm the diagnosis of small cell neuroendocrine carcinoma. A majority (87%) of the respondents were in agreement regarding the utilization of type of IHC markers for small cell neuroendocrine carcinoma for which 85% of the pathologists agreed that determination of the site of origin of a high-grade neuroendocrine carcinoma is not critical, as these are treated similarly. In the setting of mixed carcinomas, 62% of respondents indicated that they provide quantification and grading of the acinar component. There were varied responses regarding the prognostic implication of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and for Paneth cell-like differentiation. The classification of large cell neuroendocrine carcinoma was highly varied, with only 38% agreement in the illustrated case. Finally, despite the recommendation not to perform neuroendocrine markers in the absence of morphologic evidence of neuroendocrine differentiation, 62% would routinely utilize IHC in the work-up of a Gleason score 5 + 5 = 10 acinar adenocarcinoma and its differentiation from high-grade neuroendocrine carcinoma. Conclusion. There is a disparity in the practice utilization patterns among the urologic pathologists with regard to diagnosing high-grade neuroendocrine carcinoma and in understanding the clinical significance of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and Paneth cell-like neuroendocrine differentiation. There seems to have a trend towards overutilization of IHC to determine neuroendocrine differentiation in the absence of neuroendocrine features on morphology. The survey results suggest a need for further refinement and development of standardized guidelines for the classification and reporting of neuroendocrine differentiation in the prostate gland.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Urology Center and Pathology Laboratory, Raipur, India
| | | | - Rajal B Shah
- Department of Pathology, UT Southwestern University, Dallas, TX, USA
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Murali Varma
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Manju Aron
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Shivani R Kandukari
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel L Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Ro
- Department of Pathology and Genomic Medicine, Methodist Hospital, Houston, TX, USA
| | - Adeboye O Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Lovelesh K Nigam
- Department of Pathology and Division of Renal and Urologic Pathology, Lal Pathology Laboratory, New Delhi, India
| | - Rohan Sardana
- Department of Pathology, Ampath Pathological Laboratory, Hyderabad, India
| | - Paromita Roy
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Seema Kaushal
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Midha
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Minakshi Swain
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Hyderabad, India
| | - Asawari Ambekar
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Mumbai, India
| | - Suvradeep Mitra
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vishal Rao
- Department of Pathology and Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, India
| | - Shailesh Soni
- Department of Pathology and Laboratory Medicine, Muljibhai Patel Urological Hospital, Gujarat, India
| | - Kavita Jain
- Department of Pathology and Laboratory Medicine, Max Superspeciality Hospital, New Delhi, India
| | - Preeti Diwaker
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Niharika Pattnaik
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | | | - Mukund Sable
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ekta Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Deepika Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Spinder Samra
- Department of Pathology, Dubbo Base Hospital, Dubbo, NSW, Australia
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Manipal Hospital, Bangalore, India
| | - Subhashis Mohanty
- Department of Histopathology, SUM Ultimate Medicare, Bhubaneswar, India
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Sankalp Sancheti
- Department of Pathology and Laboratory Medicine, Homi Bhabha Cancer Hospital & Research Centre, Punjab (A Unit of Tata Memorial Centre, Mumbai), India
| | - Niraj Kumari
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raebareli, India
| | - Shilpy Jha
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Mallika Dixit
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Vipra Malik
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Samriti Arora
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Gauri Munjal
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer, New York, NY, USA
| | | | | |
Collapse
|
42
|
Abbott T, Ng K, Nobes J, Muehlschlegel P. Small-Cell Carcinoma of the Prostate - Challenges of Diagnosis and Treatment: A Next of Kin and Physician Perspective Piece. Oncol Ther 2023; 11:291-301. [PMID: 37358792 PMCID: PMC10447819 DOI: 10.1007/s40487-023-00238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
This article was co-authored by a patient's relative describing their experiences of receiving a diagnosis and subsequent clinical management of a rare form of prostate cancer, neuroendocrine prostate cancer (NEPC). The difficulty of receiving this diagnosis, particularly as this was terminal with no options for systemic treatment, and experiences throughout this process are detailed. The relative's questions regarding the care of her partner, NEPC and clinical management are answered. The treating physician's perspective regarding clinical management is enclosed. Prostate cancer remains one of the most common cancer diagnoses, with small-cell carcinoma (SCC) of the prostate representing 0.5-2% of these. Prostatic SCC frequently develops in patients previously treated for prostate adenocarcinoma, more rarely arising de novo. Diagnosis and management present clinical challenges owing to its rarity, frequently aggressive disease course, lack of specific diagnostic and monitoring biomarkers, and treatment limitations. Current pathophysiological understanding of prostatic SCC, genomics and contemporary and evolving treatment options in addition to current guidelines are discussed. Written principally from the patient's relatives and physician experience with discussion of current evidence, diagnostic and treatment options, we hope this piece is informative for both patients and healthcare professionals alike.
Collapse
Affiliation(s)
| | - Kenrick Ng
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Jenny Nobes
- Department of Oncology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - Paula Muehlschlegel
- Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
43
|
Cohen D, Hazut Krauthammer S, Fahoum I, Kesler M, Even-Sapir E. PET radiotracers for whole-body in vivo molecular imaging of prostatic neuroendocrine malignancies. Eur Radiol 2023; 33:6502-6512. [PMID: 37052659 DOI: 10.1007/s00330-023-09619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [18F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18F or 68Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [18F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [18F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [18F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended. KEY POINTS: • The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data. • When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [18F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand. • When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management.
Collapse
Affiliation(s)
- Dan Cohen
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, 6 Weizmann St, 6423906, Tel Aviv, Israel.
| | - Shir Hazut Krauthammer
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, 6 Weizmann St, 6423906, Tel Aviv, Israel
| | - Ibrahim Fahoum
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mikhail Kesler
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, 6 Weizmann St, 6423906, Tel Aviv, Israel
| | - Einat Even-Sapir
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, 6 Weizmann St, 6423906, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Nie J, Zhang P, Liang C, Yu Y, Wang X. ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med 2023; 205:318-331. [PMID: 37355053 DOI: 10.1016/j.freeradbiomed.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC). NEPC is usually associated with tumor aggression, hormone therapy resistance, and poor clinical outcome. However, the mechanisms underlying the trans-differentiation from CRPC to NEPC have not been elucidated. Achaete-scute complex-like 1 (ASCL1) plays a role in neuronal commitment and differentiation and olfactory and autonomic neuron generation. This study revealed that ASCL1 was regulated by the SRY-box transcription factor 2 (SOX2) and highly expressed in NEPC cells, which was closely related to poor prognosis. Moreover, ASCL1 overexpression significantly enhanced CRPC progression to NEPC by resisting ferroptosis. Mechanically, ferroptosis resistance was mediated by CAMP-responsive element binding protein 1 (CREB1) phosphorylation, promoted by substantially upregulated ASCL1 in NEPC cells. In addition, upregulated SOX2 induced PCa cell differentiation into neuroendocrine tumors by mediating their lineage changes. In conclusion, inhibiting the ferroptosis resistance mediated by ASCL1 could provide a new NEPC therapeutic target and increase patient survival.
Collapse
Affiliation(s)
- Jiawei Nie
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
45
|
Bhinder B, Ferguson A, Sigouros M, Uppal M, Elsaeed AG, Bareja R, Alnajar H, Eng KW, Conteduca V, Sboner A, Mosquera JM, Elemento O, Beltran H. Immunogenomic Landscape of Neuroendocrine Prostate Cancer. Clin Cancer Res 2023; 29:2933-2943. [PMID: 37223924 PMCID: PMC10524949 DOI: 10.1158/1078-0432.ccr-22-3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alison Ferguson
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manik Uppal
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ahmed G. Elsaeed
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kenneth Wha Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Vincenza Conteduca
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| |
Collapse
|
46
|
Eule CJ, Hu J, Al-Saad S, Collier K, Boland P, Lewis AR, McKay RR, Narayan V, Bosse D, Mortazavi A, Rose TL, Costello BA, Bryce AH, Lam ET. Outcomes of Second-Line Therapies in Patients With Metastatic de Novo and Treatment-Emergent Neuroendocrine Prostate Cancer: A Multi-Institutional Study. Clin Genitourin Cancer 2023; 21:483-490. [PMID: 37193610 PMCID: PMC10536803 DOI: 10.1016/j.clgc.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND De novo neuroendocrine prostate cancer (NEPC) and treatment-emergent neuroendocrine prostate cancer (T-NEPC) are rare diseases with a poor prognosis. After first-line platinum chemotherapy, there is no consensus on second-line treatments. PATIENTS AND METHODS Patients with a pathologic diagnosis of de novo NEPC or T-NEPC between 2000 and 2020 who received first-line platinum and any second-line systemic therapy were selected and standardized clinical data was collected via the electronic health record at each institution. The primary endpoint was overall survival (OS) based on second-line therapy. Secondary endpoints included objective response rate (ORR) to second-line therapy, PSA response, and time on treatment. RESULTS Fifty-eight patients (32 de novo NEPC, 26 T-NEPC) from 8 institutions were included. At de novo NEPC or T-NEPC diagnosis, the overall cohort had a median age of 65.0 years (IQR 59.2-70.3) and median PSA of 3.0 ng/dL (IQR 0.6-17.9). Following first-line platinum chemotherapy, 21 patients (36.2%) received platinum chemotherapy, 10 (17.2%) taxane monotherapy, 11 (19.0%) immunotherapy, 10 (17.2%) other chemotherapy, and 6 (16.2%) other systemic therapy. Among 41 evaluable patients, the ORR was 23.5%. The mOS after start of second-line therapy was 7.4 months (95% CI 6.1-11.9). CONCLUSIONS In this retrospective study, patients with de novo NEPC or T-NEPC who received second-line therapy were treated with wide variety of treatment regimens, reflecting the lack of consensus in this setting. Most patients received chemotherapy-based treatments. Overall prognosis was poor and ORR was low in the second line regardless of treatment choice.
Collapse
Affiliation(s)
- Corbin J Eule
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Junxiao Hu
- Biostatistics and Bioinformatics, University of Colorado Cancer Center Biostatistics Core, Aurora, CO
| | - Sulaiman Al-Saad
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Katharine Collier
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, and the Comprehensive Cancer Center, Columbus, OH
| | - Patrick Boland
- Division of Medical Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Akeem R Lewis
- Division of Medical Oncology, Mayo Clinic Cancer Center, Rochester, MN
| | - Rana R McKay
- Division of Medical Oncology, Moores Cancer Center, University of California San Diego, San Diego, CA
| | - Vivek Narayan
- Division of Medical Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Dominick Bosse
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, and the Comprehensive Cancer Center, Columbus, OH
| | - Tracy L Rose
- Division of Medical Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Brian A Costello
- Division of Medical Oncology, Mayo Clinic Cancer Center, Rochester, MN
| | - Alan H Bryce
- Division of Medical Oncology, Mayo Clinic, Phoenix, AZ
| | - Elaine T Lam
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO.
| |
Collapse
|
47
|
Van Emmenis L, Ku SY, Gayvert K, Branch JR, Brady NJ, Basu S, Russell M, Cyrta J, Vosoughi A, Sailer V, Alnajar H, Dardenne E, Koumis E, Puca L, Robinson BD, Feldkamp MD, Winkis A, Majewski N, Rupnow B, Gottardis MM, Elemento O, Rubin MA, Beltran H, Rickman DS. The Identification of CELSR3 and Other Potential Cell Surface Targets in Neuroendocrine Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1447-1459. [PMID: 37546702 PMCID: PMC10401480 DOI: 10.1158/2767-9764.crc-22-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.g., HMMR and CESLR3). We further showed that cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) knockdown results in reduced NEPC tumor cell proliferation and migration in vitro. We provide in vivo data including laser capture microdissection followed by RNA-seq data supporting a causal role of CELSR3 in the development and/or maintenance of the phenotype associated with NEPC. Finally, we provide initial data that suggests CELSR3 is a target for T-cell redirection therapeutics. Further work is now needed to fully evaluate the utility of targeting CELSR3 with T-cell redirection or other similar therapeutics as a potential new strategy for patients with NEPC. Significance The development of effective treatment for patients with NEPC remains an unmet clinical need. We have identified specific surface proteins, including CELSR3, that may serve as novel biomarkers or therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kaitlyn Gayvert
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | | | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Subhasree Basu
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Elena Koumis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Loredana Puca
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | | | | | | | - Brent Rupnow
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| |
Collapse
|
48
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
49
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
50
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|