1
|
Macedo RT, Baranovska‐Andrigo V, Pancsa T, Klubíčková N, Rubin BP, Kilpatrick SE, Goldblum JR, Fritchie KJ, Billings SD, Michal M, Švajdler M, Kinkor Z, Michal M, Dermawan JK. Nuclear DUX4 immunohistochemistry is a highly sensitive and specific marker for the presence of CIC::DUX4 fusion in CIC-rearranged sarcomas: a study of 48 molecularly confirmed cases. Histopathology 2025; 86:423-432. [PMID: 39381843 PMCID: PMC11707495 DOI: 10.1111/his.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
AIMS CIC-rearranged sarcomas (CRS) are clinically aggressive undifferentiated round cell sarcomas (URCS), commonly driven by CIC::DUX4. Due to the repetitive nature of DUX4 and the variability of the fusion breakpoints, CIC::DUX4 fusion may be missed by molecular testing. Immunohistochemical (IHC) stains have been studied as surrogates for the CIC::DUX4 fusion. We aim to assess the performance of DUX4 IHC in the work-up of CRS and its expression in non-CRS round cell or epithelioid neoplasms. METHODS AND RESULTS Cases of molecularly confirmed CRS (n = 48) and non-CRS (n = 105) were included. CRS cases consisted of 35 females and 13 males, with ages ranging from less than 1 year to 67 years (median = 41 years). Among the molecularly confirmed non-CRS cases, C-terminal DUX4 expression was investigated in Ewing sarcomas (38 cases), alveolar rhabdomyosarcomas (18 cases), desmoplastic small round cell tumours (12 cases) and synovial sarcomas (n = five), as well as in non-mesenchymal neoplasms such as SMARCA4/SMARCB1-deficient tumours (n = five), carcinomas of unknown primary (n = three) and haematolymphoid neoplasms (four cases). DUX4 IHC was considered positive when strong nuclear expression was detected in more than 50% of neoplastic cells. When used as a surrogate for the diagnosis of CRS, the sensitivity and specificity of DUX4 IHC was 98 and 100%, respectively. Only one CRS case was negative for DUX4 IHC and harboured a CIC::FOXO4 fusion. CONCLUSIONS DUX4 IHC is a highly sensitive and specific surrogate marker for the presence of CIC::DUX4 fusion, demonstrating its utility in establishing a diagnosis of CRS.
Collapse
Affiliation(s)
- Rodrigo T Macedo
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Vira Baranovska‐Andrigo
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
| | - Tamás Pancsa
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Natálie Klubíčková
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Brian P Rubin
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Scott E Kilpatrick
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - John R Goldblum
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Karen J Fritchie
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Steven D Billings
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Michal Michal
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Marián Švajdler
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | | | - Michael Michal
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Josephine K Dermawan
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| |
Collapse
|
2
|
Atiq MA, Balan J, Blackburn PR, Gross JM, Voss JS, Jin L, Fadra N, Davila JI, Pitel BA, Siqueira Parrilha Terra SB, Minn KT, Jackson RA, Hofich CD, Willkomm KS, Peterson BJ, Clausen SN, Rumilla KM, Gupta S, Lo YC, Ida CM, Molligan JF, Thangaiah JJ, Petersen MJ, Sukov WR, Guo R, Giannini C, Schoolmeester JK, Fritchie K, Inwards CY, Folpe AL, Oliveira AM, Torres-Mora J, Kipp BR, Halling KC. SARCP, a Clinical Next-Generation Sequencing Assay for the Detection of Gene Fusions in Sarcomas: A Description of the First 652 Cases. J Mol Diagn 2025; 27:74-95. [PMID: 39521244 DOI: 10.1016/j.jmoldx.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
An amplicon-based targeted next-generation sequencing (NGS) assay for the detection of gene fusions in sarcomas was developed, validated, and implemented. This assay can detect fusions in targeted regions of 138 genes and BCOR internal tandem duplications. This study reviews our experience with testing on the first 652 patients analyzed. Gene fusions were detected in 238 (36.5%) of 652 cases, including 83 distinct fusions in the 238 fusion-positive cases, 10 of which had not been previously described. Among the 238 fusion-positive cases, the results assisted in establishing a diagnosis for 137 (58%) cases, confirmed a suspected diagnosis in 66 (28%) cases, changed a suspected diagnosis in 25 (10%) cases, and were novel fusions with unknown clinical significance in 10 (4%) cases. Twenty-six cases had gene fusions (ALK, ROS1, NTRK1, NTRK3, and COL1A1::PDGFB) for which there are targetable therapies. BCOR internal tandem duplications were identified in 6 (1.2%) of 485 patients. Among the 138 genes in the panel, 66 were involved in one or more fusions, and 72 were not involved in any fusions. There was little overlap between the genes involved as 5'-partners (31 different genes) and 3'-partners (37 different genes). This study shows the clinical utility of a next-generation sequencing gene fusion detection assay for the diagnosis and treatment of sarcomas.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Numrah Fadra
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jaime I Davila
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kurt S Willkomm
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sydney N Clausen
- University of Minnesota Medical School, Duluth, Duluth, Minnesota
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeremy F Molligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Petersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Marcelis L, Sciot R. [Undifferentiated small round cell sarcomas of bone and soft tissue]. Ann Pathol 2025; 45:78-91. [PMID: 39510958 DOI: 10.1016/j.annpat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
In the 2020 5th edition of the World Health Organization classification of soft tissue and bone tumours a major reorganization of Undifferentiated Small Round Cell Sarcomas (USRCS) took place based on the underlying molecular features. The classification now recognizes Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions, CIC-rearranged sarcoma and sarcoma with BCOR alterations. The focus on these genetic alterations highlights the importance of molecular techniques in the diagnosis of these entities. Knowledge of these features can drastically reduce the time to diagnosis and avoid potential misdiagnosis. Molecular diagnostic capabilities should not be limited to an overall small number of centres worldwide as is reflected by the WHO's recognition of 'essential' and 'desirable' diagnostic criteria. A good knowledge of the usual histomorphology, uncommon variants and diagnostic pitfalls remains essential even in centres with access to a full molecular testing arsenal. This review aims to give an overview of the current classification of USRCS not by going over each entity, but instead going over the molecular, morphological, immunophenotypic and clinical features step by step to allow easy comparison of these features between the separate entities.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique.
| | - Rafael Sciot
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique
| |
Collapse
|
4
|
Lajara S, Jo VY. Soft Tissue Fine-Needle Aspiration: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:483-507. [PMID: 39129144 DOI: 10.1016/j.path.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Soft tissue neoplasms pose many diagnostic challenges on fine-needle aspiration (FNA), owing largely to their rarity, large number of entities, and histologic diversity. Advances in ancillary testing now allow detection of the characteristic immunophenotypes and molecular alterations for many neoplasms and include reliable surrogate immunohistochemical markers for underlying molecular events that are highly efficient in small biopsies. A morphology-based framework is recommended to guide appropriate differentials and judicious selection of ancillary tests for small biopsies. The accurate diagnosis of soft tissue tumors is crucial for patient management and prognostication, with many potential implications in this era of precision medicine.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, UPMC Shadyside Hospital, Cancer Pavilion, Suite 201, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vickie Y Jo
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhao L, He H, Ren J, Huang Y, Yan H, Yuan J. CIC::NUTM1 sarcomas occurred in soft tissues of upper limbs : a rare case report and literature review. Diagn Pathol 2024; 19:76. [PMID: 38851744 PMCID: PMC11162069 DOI: 10.1186/s13000-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND CIC-rearranged sarcomas (CRS) represent a new entity of undifferentiated small round cell sarcoma belonging to the Ewing-like sarcomas family. CRS are the most common type. Fusion partners for the CIC gene include DUX4, FOXO4, and the recently recognizedNUTM1. Rare cases of CIC::NUTM1 sarcoma in pediatric patients have recently been reported in brain, kidney, bone, and soft tissues. However, such cases have not been identified in the soft tissues of the limbs. CASE PRESENTATION We reported a case of CIC::NUTM1 sarcoma located in the right upper limb of an 18-year-old man. The tumor displayed morphologic features typical of CIC::DUX4 sarcomas, with small- to medium-sized round cells, a lobular pattern, focal spindling, myxoid stroma, and patchy necrosis. The tumor diffusely expressed NUTM1, was positive for WT1cter at weak to moderate intensity, and was focally positive for CD99, while it was negative for keratins, EMA, P40, MyoD1, myogenin, NKX2.2, BCOR, and pan-TRK. Fluorescence in situ hybridization analyses revealed cleavage of the CIC and NUTM1 genes. CONCLUSION CIC::NUTM1 sarcomas represent a novel molecular variant of CRS with a preference for the central nervous system and younger pediatric persons. Its morphology and phenotype may be mistaken for NUT carcinomas, and the behavior is more progressive than other forms of CRS. For this rare and newly discovered gene fusion variant, it is necessary to integrate molecular and immunohistochemical findings with morphologic features in the diagnosis of undifferentiated neoplasms.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huihua He
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jiacai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
6
|
Ponce RKM, Luck C, Okimoto RA. Molecular and therapeutic advancements in Capicua ( CIC)-rearranged sarcoma. Front Cell Dev Biol 2024; 12:1416697. [PMID: 38882060 PMCID: PMC11176417 DOI: 10.3389/fcell.2024.1416697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Capicua (CIC)-rearranged sarcomas are an aggressive subset of undifferentiated round cell sarcomas. CIC::DUX4, the proto-typical CIC fusion oncoprotein is associated with rapid clinical progression and chemotherapy resistance leading to poor clinical outcomes. Recent studies have identified additional CIC fusions (CIC::NUTM1, CIC::FOXO4, and CIC::LEUTX) that largely retain CIC-binding specificity but leverage C-terminal binding partners (NUTM1, FOXO4, and LEUTX) to potentially activate transcriptional programs that drive oncogenesis. Moreover, the recent development of preclinical models to study CIC::DUX4 sarcoma have advanced our understanding of the underlying biological mechanisms and uncovered key dependencies that can be translated into rational therapies. In this review, we will highlight these recent advancements in CIC-rearranged sarcoma biology with a vision for clinical translation to improve patient outcomes.
Collapse
Affiliation(s)
| | - Cuyler Luck
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ross A. Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Dehner CA, Lazar AJ, Chrisinger JSA. Updates on WHO classification for small round cell tumors: Ewing sarcoma vs. everything else. Hum Pathol 2024; 147:101-113. [PMID: 38280658 DOI: 10.1016/j.humpath.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The WHO Classification of Soft Tissue and Bone Tumours currently recognizes four categories of undifferentiated small round cell sarcoma: Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions including NFATc2 and PATZ1, CIC-rearranged sarcoma, and sarcoma with BCOR genetic alterations. These neoplasms frequently pose significant diagnostic challenges due to rarity and overlapping morphologic and immunohistochemical findings. Further, molecular testing, with accompanying pitfalls, may be needed to establish a definitive diagnosis. This review summarizes the clinical, histologic, immunohistochemical, and molecular features of these neoplasms. In addition, differential diagnosis and areas of uncertainty and ongoing investigation are discussed.
Collapse
MESH Headings
- Humans
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/classification
- Sarcoma, Ewing/chemistry
- Bone Neoplasms/pathology
- Bone Neoplasms/genetics
- Bone Neoplasms/classification
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Sarcoma, Small Cell/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- World Health Organization
- Diagnosis, Differential
- Immunohistochemistry
- Soft Tissue Neoplasms/pathology
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/classification
- RNA-Binding Protein EWS/genetics
- Repressor Proteins/genetics
- Gene Rearrangement
- Proto-Oncogene Proteins/genetics
- Predictive Value of Tests
- Phenotype
- Genetic Predisposition to Disease
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
9
|
Murphy J, Resch EE, Leland C, Meyer CF, Llosa NJ, Gross JM, Pratilas CA. Clinical outcomes of patients with CIC-rearranged sarcoma: a single institution retrospective analysis. J Cancer Res Clin Oncol 2024; 150:112. [PMID: 38436779 PMCID: PMC10912249 DOI: 10.1007/s00432-024-05631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE CIC-rearranged sarcomas represent a type of undifferentiated small round cell sarcoma (USRCS) characterized by poor survival, rapid development of chemotherapy resistance, and high rates of metastasis. We aim to contribute to the growing body of knowledge regarding diagnosis, treatment, clinical course, and outcomes for these patients. METHODS This case series investigates the clinical courses of ten patients with CIC-rearranged sarcoma treated at the Johns Hopkins Hospital from July 2014 through January 2024. Clinical data were retrospectively extracted from electronic medical records. RESULTS Patients ranged from 10 to 67 years of age at diagnosis, with seven patients presenting with localized disease and three with metastatic disease. Tumors originated from soft tissues of various anatomic locations. Mean overall survival (OS) was 22.1 months (10.6-52.2), and mean progression-free survival (PFS) was 16.7 months (5.3-52.2). Seven patients received intensive systemic therapy with an Ewing sarcoma-directed regimen or a soft tissue sarcoma-directed regimen. Three patients experienced prolonged disease-free survival without systemic treatment. CONCLUSION Most patients in this case series demonstrated aggressive clinical courses consistent with those previously described in the literature, although we note a spectrum of clinical outcomes not previously reported. The diversity of clinical courses underscores the need for an improved understanding of individual tumor biology to enhance clinical decision-making and patient prognosis. Despite its limitations, this article broadens the spectrum of reported clinical outcomes, providing a valuable addition to the published literature on this rare cancer.
Collapse
Affiliation(s)
- Jacob Murphy
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Erin E Resch
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Christopher Leland
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, USA
| | - Christian F Meyer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Nicolas J Llosa
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Christine A Pratilas
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
| |
Collapse
|
10
|
Makise N, Yoshida A. CIC-Rearranged Sarcoma. Surg Pathol Clin 2024; 17:141-151. [PMID: 38278603 DOI: 10.1016/j.path.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
CIC-rearranged sarcoma is a rare type of small round cell sarcoma. The tumors often affect the deep soft tissues of patients in a wide age range. They are highly aggressive, respond poorly to chemotherapy, and have a worse outcome than Ewing sarcoma. CIC-rearranged sarcoma has characteristic and recognizable histology, including lobulated growth, focal myxoid changes, round to epithelioid cells, and minimal variation of nuclear size and shape. Nuclear ETV4 and WT1 expression are useful immunohistochemical findings. CIC fusion can be demonstrated using various methods; however, even next-generation sequencing suffers from imperfect sensitivity, especially for CIC::DUX4.
Collapse
Affiliation(s)
- Naohiro Makise
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba, 260-8717, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Rare Cancer Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
11
|
Shaheen A, Bauman G, Cacciotti C, Zelcer S, Ramadan S. Methylation and Molecular Profiling to Aid in Diagnosis and Radiation Treatment for an Intracranial Ewing Sarcoma in a Pediatric Patient: A Case Report. Adv Radiat Oncol 2024; 9:101352. [PMID: 38405311 PMCID: PMC10885575 DOI: 10.1016/j.adro.2023.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 02/27/2024] Open
Affiliation(s)
- Amber Shaheen
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University London, Ontario, Canada
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Shayna Zelcer
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Sherif Ramadan
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Wei Y, Zhang Z, Long C, Huang X, Tang W, Mo X, Liu J. Case Report: Colon malignant tumor caused by retroperitoneal small round cell undifferentiated sarcoma. Front Oncol 2023; 13:1212475. [PMID: 38179167 PMCID: PMC10764574 DOI: 10.3389/fonc.2023.1212475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Small round cell undifferentiated sarcoma is a rare and highly invasive group of malignant bone and soft tissue tumors, often associated with a high misdiagnosis rate. The patient in this case was a 34-year-old male who presented with a two-month history of abdominal pain that worsened over the past two weeks. Elevated levels of tumor markers CA19-9 and CA72-4 were observed. Imaging revealed a substantial, well-vascularized mass in the lower left abdomen, located in the posterior abdominal cavity, invading the descending colon and the root of the small mesentery, and infiltrating the serous layer. The lesion was extensively resected without any postoperative complications. Microscopic examination indicated a combination of mucinous adenocarcinoma (approximately 30%) and small round cell undifferentiated sarcoma (approximately 70%). The patient was followed up for six months, and one month after surgery, a recurrence of the tumor was observed in the left paracolonic sulcus area, with metastases to the abdominal wall, peritoneum, and medial iliac muscles. Chemotherapy and targeted therapy were administered, and the patient currently survives with the presence of tumors. Small round cell undifferentiated sarcoma is an uncommon and highly invasive tumor, and clinical surgeons need to raise their awareness and realize to the maximum extent possible that this disease can be described through a multi-modal combination of immunohistochemistry and genetic test to improve diagnostic accuracy and reduce missed diagnoses. Further research in the field of biology is necessary to explore targeted drugs specifically suitable for this disease.
Collapse
Affiliation(s)
- Yuqin Wei
- Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of General Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
13
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
15
|
Rekhi B, Rumdee R, Shetty O. Clinicopathological features of five cases of CIC::DUX4 positive sarcomas, including literature review. Ann Diagn Pathol 2023; 65:152153. [PMID: 37167753 DOI: 10.1016/j.anndiagpath.2023.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
According to the recent World Health Organization (WHO) classification, CIC-rearranged sarcomas, including CIC::DUX4-positive sarcomas constitute an aggressive subtype of undifferentiated round cell sarcomas. There is a single study on these tumors from our subcontinent. We present clinicopathological features of 5 additional cases of this tumor entity, including literature review. Thirty-nine undifferentiated round cell sarcomas, excluding Ewing sarcomas (ES), were tested for CIC::DUX4 fusion, including Type I (165 base pair size) and II (230 bp) by reverse transcription-polymerase chain reaction. Twenty-five of those tumors were tested for EWSR1 gene rearrangement, 5 for SS18 and 4 for SS18::SSX fusion, and were negative for those tests. Five tumors (12.8 %) were positive for CIC::DUX4(Type II) fusion. Five CIC:: DUX4-positive sarcomas occurred in 4 males and one female; of 25-43 years of age, in soft tissues, including thigh (n = 2), chest wall (n = 1), iliac region (n = 1) and foot (n = 1). Tumor size varied from 2.2 to 19 cm. Microscopically, the tumors were predominantly composed of nodules and sheets of malignant round to epithelioid cells, including "rhabdoid-like" (n = 2) and spindle-shaped (n = 2) with eosinophilic to vacuolated cytoplasm (4/5), distinct nucleoli (4/5), brisk mitoses, focal myxoid to hyalinised stroma (4/5) and necrosis (5/5). Immunohistochemically, tumor cells were positive for WT1 (5/5), calretinin (3/4), pan-keratin (1/4), CD99/MIC2 ("dot-like" to cytoplasmic membranous) (4/4), while negative for desmin (0/4), S100P (0/4), and NKX2.2 (0/5). INI1/SMARCB1 was retained (3/3). All patients underwent excision with adjuvant radiotherapy and chemotherapy (Ewing sarcoma regimen). A single patient developed recurrence, and 2 developed pulmonary metastasis, including one with brain metastasis. CIC:: DUX4-positive sarcomas are ultra-rare tumors, that mainly occur in the soft tissues and in young adult patients. Histopathologically, these tumors display a wide spectrum, including round to epithelioid cells, variable amount of cytoplasmic vacuolization and myxoid stroma with necrosis. Immunohistochemically, these tumors express WT1 and calretinin. Despite adjuvant therapies, these tumors have dismal outcomes, especially in large-sized tumors. CIC::DUX4-positive sarcomas need to be differentiated from their histopathological mimics, including ES, in view of significant treatment-related implications.
Collapse
Affiliation(s)
- Bharat Rekhi
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India; Division of Molecular Pathology and Translational Medicine, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India; Homi Bhabha National Institute (HBNI) University, Parel, Mumbai, Maharashtra, India.
| | - Rachna Rumdee
- Division of Molecular Pathology and Translational Medicine, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Omshree Shetty
- Division of Molecular Pathology and Translational Medicine, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Linos K, Dermawan JK, Bale T, Rosenblum MK, Singer S, Tap W, Dickson MA, Hornick JL, Antonescu CR. Expanding the Molecular Diversity of CIC-Rearranged Sarcomas With Novel and Very Rare Partners. Mod Pathol 2023; 36:100103. [PMID: 36788092 PMCID: PMC10324473 DOI: 10.1016/j.modpat.2023.100103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Capicua transcriptional repressor (CIC)-rearranged sarcoma represents a distinct pathologic entity and constitutes the second most prevalent category of undifferentiated round cell sarcomas (URCSs) after Ewing sarcoma. The 2 most common translocations are t(4;19) and t(10;19), resulting in CIC fusions with either DUX4 and DUX4L paralog, respectively; however, other rare variant fusions have also been reported. In this study, we expand the molecular spectrum of CIC-gene partners, reporting on 5 cases of URCSs showing CIC fusions with AXL, CITED1, SYK, and LEUTX by targeted RNA or DNA sequencing. There were 4 female patients and 1 male patient with a wide age range (12-70 years; median, 36 years). Four cases occurred in the deep soft tissues (lower extremity, 3; neck, 1) and 1 case in the central nervous system (midbrain/thalamus). All cases showed similar histologic findings within the spectrum of URCSs. Immunohistochemistry, showed variable positivity for ETV4 in 4 of the 4 cases and positive results for ERG in 3 of the 4 cases and for WT1 in 1 of the 4 cases. CD31 showed positivity in 2 of the 3 cases, including one coexpressing ERG. Unsupervised clustering of methylation profiles by T-distributed stochastic neighborhood embedding performed in 4 cases showed that all clustered tightly together and along the CIC sarcoma methylation class. RNA-sequencing data showed consistent upregulation of ETV1 and ETV4 mRNA in all cases examined, at similar levels to CIC::DUX4 URCSs. Our study expands the molecular diversity of CIC-rearranged URCSs to include novel and rare partners, providing morphologic, immunohistochemical, gene expression, and methylation evidence supporting their classification within the family of tumors harboring the more common DUX4/DUX4L partner genes.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tejus Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc K Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Tap
- Department of Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark A Dickson
- Department of Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason L Hornick
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
18
|
Yoshida A. Ewing and Ewing-like sarcomas: A morphological guide through genetically-defined entities. Pathol Int 2023; 73:12-26. [PMID: 36484765 PMCID: PMC10107474 DOI: 10.1111/pin.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
The fifth edition of the World Health Organization classification of soft tissue and bone tumors redefined Ewing sarcoma by fusions between EWSR1/FUS and ETS family of transcription factors, and recognized three tumor groups among Ewing-like sarcoma: CIC-rearranged sarcoma, sarcoma with BCOR genetic alterations, and round cell sarcoma with EWSR1::non-ETS fusions. Although this classification underscores the critical role of molecular genetics in the diagnosis of small round cell sarcoma, each entry is recognized as a specific entity not only because they have different genetics but because their phenotypes are distinct and reasonably robust to support the diagnosis. This review focuses on the morphological aspects of Ewing sarcoma and a subset of Ewing-like sarcomas (CIC-rearranged sarcoma, BCOR-associated sarcoma, and EWSR1::NFATC2 sarcoma) for which phenotypic characteristics have been well established. Classic histological findings, uncommon variations, and recurrent diagnostic pitfalls are addressed, along with the utility of recently developed immunohistochemical markers (NKX2.2, PAX7, ETV4, BCOR, CCNB3, and NKX3.1). Phenotypic expertise would significantly expedite the diagnostic process and complement (or sometimes outperform) genetic testing, even in well-resourced settings. Morphological knowledge plays an even more substantial role in facilities that do not have easy access to molecular testing.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center, Tokyo, Japan
| |
Collapse
|
19
|
Babkoff A, Berner-Wygoda Y, Diment J, Kustanovich A, Zick A, Katz D, Grinshpun A. First Female Patient with a Rare CIC-FOXO4-Translocated Sarcoma: A Case Report. Case Rep Oncol 2023; 16:954-962. [PMID: 37900856 PMCID: PMC10601800 DOI: 10.1159/000533519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/04/2023] [Indexed: 10/31/2023] Open
Abstract
Small round cell sarcoma is a group of undifferentiated malignancies arising in the bone and soft tissue, notable for Ewing sarcoma. Recently, a new World Health Organization classification has been introduced, including an additional subset of these sarcomas, named CIC-rearranged sarcoma. Within this group, CIC-FOXO4 translocation is an exceedingly rare fusion that has been reported only 4 times in the literature. Herein, we report in-depth the pathological, clinical, and molecular features of a CIC-FOXO4 translocation-driven tumor in a 46-year-old woman.
Collapse
Affiliation(s)
- Aryeh Babkoff
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Berner-Wygoda
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Judith Diment
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Katz
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Oncology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Brahmi M, Gaspar N, Gantzer J, Toulmonde M, Boudou‐Rouquette P, Bompas E, Firmin N, Valentin T, Cancel M, Duffaud F, Bertucci F, Perrin C, Dufresne A, Marec‐Bérard P, Jean‐Denis M, Ray‐Coquard I, Le Loarer F, Pierron G, Tirode F, Blay J, Watson S. Patterns of care and outcome of
CIC
‐rearranged sarcoma patients: A nationwide study of the French sarcoma group. Cancer Med 2022; 12:7801-7807. [PMID: 36537582 PMCID: PMC10134374 DOI: 10.1002/cam4.5539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CIC-rearranged sarcomas (CIC-RS) represent the most frequent subset of "Ewing-like" undifferentiated small round cell sarcomas. These tumors tend to be more aggressive than Ewing sarcomas. Moreover, treatment strategy can differ according to teams. The primary aim of this retrospective study was to describe the characteristics, treatments, and outcome for patients with CIC-RS included in the French NETSARC+ database. METHODS Pediatric and adult patients from 13 French centers with a diagnosis of CIC-RS were registered from October 2008 to March 2021. Patients and tumors characteristics were collected from the national network NETSARC+ database (http://netsarc.sarcomabcb.org). CIC-RS diagnosis was pathologically and molecularly confirmed with a central review by expert pathologists. Two groups of patients were studied: those treated as classical Ewing sarcomas (cohort EwS) and those treated as high-grade soft tissue sarcomas (cohort STS) according to ESMO and/or EpSSG guidelines. Survival was calculated using the Kaplan-Meier method and the log-rank test was used to compare survival. RESULTS Among 79 patients, the male/female sex ratio was 0.7 and the median age at diagnosis was 27 years (range 2-87). With a median follow-up of 37 months, 39 patients died of the disease. Median overall survival from diagnosis was 18 months, with no significant difference between both cohorts (p = 0.9). Nevertheless, when focusing on patients with metastatic disease at diagnosis (N = 21), all patients from cohort STS died of disease while some patients from cohort EwS were still alive and in complete remission. CONCLUSION FSG experience confirms the aggressive clinical course of CDS patients regardless of chemotherapy regimen.
Collapse
|
21
|
Wu Q, He Y. A case report of CIC-DUX4 fusion-positive sarcoma in the pelvic cavity with targeted next-generation sequencing results. Front Oncol 2022; 12:1018992. [PMID: 36591446 PMCID: PMC9798229 DOI: 10.3389/fonc.2022.1018992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
CIC-DUX4 fusion-positive sarcoma is a subtype of undifferentiated small round cell sarcoma that is rarely reported. As far as we know, less than 200 cases have been reported worldwide to date. The clinicopathologic characteristics of this kind of tumor are non-specific, which makes it difficult to be diagnosed. Therefore, more cases are required to enrich the diagnosis and treatment experience. Here, we present a 17-year-old Asian girl diagnosed with CIC-DUX4 fusion-positive sarcoma after targeted next-generation sequencing. Her clinical manifestation was abdominal pain. Furthermore, a mass in the pelvic cavity and massive ascites were found after an imaging examination. After resection, the mass was sent to the pathology department for a definite diagnosis, and the micromorphology showed an undifferentiated sarcoma with massive necrosis. The tumor cells were round to spindle with clear to eosinophilic cytoplasm and vesicular nuclei. Rhabdoid cells and myxoid mesenchyme were focally shown. Immunohistochemical staining showed diffusely positive for vimentin, cyclin D1, Fli-1, and WT-1 and very focally positive for CD99. Moreover, the targeted next-generation sequencing also revealed other genetic changes in this tumor including LongInDel of POLE, copy number variation of CD79, low tumor mutational burden, and microsatellite stability. With a follow-up time of 6 months, the patient survived the disease and received chemotherapy routinely. This report presented a rare primary site CIC-DUX4 fusion-positive sarcoma (CDS) and revealed novel genetic changes that enrich the manifestation, histology, and cytogenetic scales of this rare sarcoma. In addition, we have summarized the clinicopathologic characteristics of this tumor by reviewing the literature to have a better understanding of CIC-DUX4 fusion-positive sarcomas, which may be helpful for diagnosis and treatment.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pathology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Ying He
- Department of Pathology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China,*Correspondence: Ying He,
| |
Collapse
|
22
|
Song K, Huang Y, Xia CD, Zhu HQ, Wang J. A case of CIC-rearranged sarcoma with CIC-LEUTX gene fusion in spinal cord. Neuropathology 2022; 42:555-562. [PMID: 35859319 PMCID: PMC10084232 DOI: 10.1111/neup.12850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
A 16-year-old male was admitted to the hospital for weakness of both lower extremities. Magnetic resonance imaging revealed an intraspinal extramedullary subdural mass at the thoracic 9 level. Microscopically, the tumor cells were small to medium sized and round to ovoid in shape. They were distributed in diffuse sheets or showed nodular appearance. The nucleus of the tumor had mild-to-moderate atypia, with vesicular chromatin and prominent nucleoli. A smaller proportion of tumor cells demonstrated rhabdoid morphology. Focal myxoid stromal change was present, in which tumor cells exhibited spindle shapes. Approximately two mitoses were counted per 10 high-power fields. No necrosis was observed. The tumor cells were focal positive for CD99; multifocal positive for WT1; diffuse positive for nestin, synaptophysin, and D2-40; partial positive for GFAP; focal positive for desmin and SSTR2; and scattered positive for S-100 protein. The Ki-67 labeling index was approximately 20%. Genetic testing revealed CIC-LEUTX gene fusion. Considering the patient's history, clinical data, pathological findings and genetic findings, we rendered a rare tumor named CIC-rearranged sarcoma with CIC-LEUTX gene fusion.
Collapse
Affiliation(s)
- Kun Song
- Department of Pathology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yu Huang
- Department of Radiology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun-Duo Xia
- Department of Pathology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hai-Qing Zhu
- Department of Pathology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juan Wang
- Department of Pathology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Xu F, Viaene AN, Ruiz J, Schubert J, Wu J, Chen J, Cao K, Fu W, Bagatell R, Fan Z, Long A, Pagliaroli L, Zhong Y, Luo M, Kreiger PA, Surrey LF, Wertheim GB, Cole KA, Li MM, Santi M, Storm PB. Novel ATXN1/ATXN1L::NUTM2A fusions identified in aggressive infant sarcomas with gene expression and methylation patterns similar to CIC-rearranged sarcoma. Acta Neuropathol Commun 2022; 10:102. [PMID: 35836290 PMCID: PMC9281131 DOI: 10.1186/s40478-022-01401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
CIC-rearranged sarcomas are newly defined undifferentiated soft tissue tumors with CIC-associated fusions, and dismal prognosis. CIC fusions activate PEA3 family genes, ETV1/4/5, leading to tumorigenesis and progression. We report two high-grade CNS sarcomas of unclear histological diagnosis and one disseminated tumor of unknown origin with novel fusions and similar gene-expression/methylation patterns without CIC rearrangement. All three patients were infants with aggressive diseases, and two experienced rapid disease deterioration and death. Whole-transcriptome sequencing identified an ATXN1-NUTM2A fusion in the two CNS tumors and an ATXN1L-NUTM2A fusion in case 3. ETV1/4/5 and WT1 overexpression were observed in all three cases. Methylation analyses predicted CIC-rearranged sarcoma for all cases. Retrospective IHC staining on case 2 demonstrated ETV4 and WT1 overexpression. ATXN1 and ATXN1L interact with CIC forming a transcription repressor complex. We propose that ATXN1/ATXN1L-associated fusions disrupt their interaction with CIC and decrease the transcription repressor complex, leading to downstream PEA3 family gene overexpression. These three cases with novel ATXN1/ATXN1L-associated fusions and features of CIC-rearranged sarcomas may further expand the scope of "CIC-rearranged" sarcomas to include non-CIC rearrangements. Additional cases are needed to demonstrate if ATXN1/ATXN1L-NUTM2A fusions are associated with younger age and more aggressive diseases.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny Ruiz
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey Schubert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Weixuan Fu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rochelle Bagatell
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariel Long
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luca Pagliaroli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiming Zhong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minjie Luo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina A Cole
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Phillip B Storm
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW CIC-DUX4 sarcoma (CDS) is a high-grade undifferentiated round cells sarcoma that belongs to the undifferentiated round cell sarcomas family. It represents less than one percent of sarcomas, defining a rarest among rare malignancies. It affects young adults, displaying soft tissue mass. Considered very aggressive, a high proportion of cases display an advanced disease with lung metastasis at diagnosis. Here we discuss recent progress in molecular characterization of CDS, the main tracks of CDS biology and the current and future prospects of therapeutic approaches. RECENT FINDINGS CDS is characterized by a specific oncogenic translocation CIC::DUX4 that induce ETV4 overexpression. Patients with CDS show an aggressive clinical course and have a significantly unfavorable outcome compared to Ewing sarcoma. As of today, there is a lack of consensus on whether they should be treated with an Ewing-like approach, as currently done by most sites, or regarded as high-grade soft tissue sarcoma (STS). Anyway, when feasible, combination regimens including anthracycline and alkylating agents should be favored and patients should not benefit from a therapeutic de-escalation. Overall, registration within clinical trials and prospective registries is recommended. SUMMARY Overall, CDS showed a poor prognosis regardless of the patterns of treatment that warrant biological studies to better understand the disease.
Collapse
|
25
|
Satomi K, Ohno M, Kubo T, Honda-Kitahara M, Matsushita Y, Ichimura K, Narita Y, Ichikawa H, Yoshida A. Central nervous system sarcoma with ATXN1::DUX4 fusion expands the concept of CIC-rearranged sarcoma. Genes Chromosomes Cancer 2022; 61:683-688. [PMID: 35715887 DOI: 10.1002/gcc.23080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
CIC-rearranged sarcoma is a high-grade sarcoma, most often harboring CIC::DUX4 fusion, and is characterized by a distinct round cell histology, co-expression of ETV4 and WT1, and a specific DNA methylation class. Herein, we report a brain tumor with ATXN1::DUX4 that had an indistinguishable phenotype and DNA methylation profile from CIC-rearranged sarcoma. A 40-year-old man presented with a 5 cm hemorrhagic mass in the right frontal lobe of the cerebrum. The tumor was resected and histologically showed a dense proliferation of relatively monomorphic round cells with multifocal myxoid changes. Immunohistochemically, the tumor was diffusely positive for ETV4, WT1, and DUX4. Through classic histomorphology and immunoprofile, the tumor was provisionally diagnosed as CIC-rearranged sarcoma. However, no CIC fusions or mutations were identified using CIC break-apart fluorescence in situ hybridization (FISH) or FoundationOne CDx. Despite multiple surgeries and adjuvant chemoradiation therapy, the patient succumbed 16 months after presentation. RNA exome sequencing detected an in-frame intraexonic ATXN1 (exon 9)::DUX4 (exon 1) fusion, which was validated by reverse transcription-polymerase chain reaction and ATXN1 FISH assay. Upon DNA methylation analysis, the tumor matched with CIC-rearranged sarcoma both by the Deutsche Krebsforschungszentrum classifier and t-distributed stochastic neighbor embedding. Along with a recent report of a similar pediatric brain tumor, the present case suggests that ATXN1::DUX4 is a recurrent alternative molecular event in the sarcoma type that is presently defined by CIC rearrangement, which prompts an expansion of the tumor concept. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kubo
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mai Honda-Kitahara
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Ichikawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
26
|
|
27
|
Domanski HA. The Small Round Cell Sarcomas Complexities and Desmoplastic Presentation. Acta Cytol 2022; 66:279-294. [PMID: 35417916 PMCID: PMC9393824 DOI: 10.1159/000524260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
Background Small round cell sarcomas (SRCSs) account for most solid malignancies in the pediatric age group and are a part of group of malignant tumors characterized by heterogenous clinical presentation and overlapping microscopic features of small, round, primitive cells. In addition to the recently established certain genetically defined subset of undifferentiated round cell sarcomas of soft tissue and bone, this group of sarcomas include desmoplastic small round cell tumor, poorly differentiated synovial sarcoma, alveolar rhabdomyosarcoma, mesenchymal chondrosarcoma, and small cell osteosarcoma. Although, those entities share clinical and cytomorphologic features and cannot be unequivocally classified based on clinical presentation and morphology alone. Most of SRCSs characterizes of particular patterns of protein expression or genetic changes and ancillary tests remain necessary to confirm or rule out a specific diagnosis. Subtle but occasionally distinctive cytologic features narrows the number of differential diagnoses and helps to select appropriate ancillary tests necessary for the final diagnosis. Thus, when adequate fine needle aspiration (FNA) biopsy specimen is combined with ancillary tests, a specific histologic diagnosis can be made in almost all cases. However, due to complex cytologic features of SRCS as well as various quality and diversity of FNA smears, there are cases in that cytologic features which do not entirely match the known diagnostic criteria. Summary The aim of this review was to summarize cytomorphologic criteria and to present rare and divergent cytological features of SRCSs. Careful assessment of clinical presentation, cytological features, immunohistochemical patterns, and molecular alternations is necessary for an accurate diagnosis. Knowing of rare and divergent microscopic findings that does not fit with the known cytological criteria will help to avoid misdiagnosis. Key Messages The role of FNA biopsies diagnosing soft tissue and bone tumors has been increasing because of the ability of ancillary tests to assist in the diagnosis of specific tumors. SRCSs may be diagnosed accurately in cytology specimens. Access to clinical and radiographic presentation, utility of ancillary tests, understanding complexity of cytological features, and awareness of the rare cytologic findings that differ from that of the established diagnostic criteria are essential to make correct diagnosis.
Collapse
|
28
|
CIC rearranged sarcomas: A Single Institution Experience of the Potential Pitfalls in Interpreting CIC FISH Results. Pathol Res Pract 2022; 231:153773. [DOI: 10.1016/j.prp.2022.153773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/19/2022]
|
29
|
Abstract
Undifferentiated small round cell sarcomas represent a heterogeneous group of mesenchymal neoplasms. While imprecise, this term nevertheless provides a useful framework for conceptualizing these tumors. This article highlights current trends in their classification based on morphology, immunohistochemistry, and advanced molecular techniques. As next-generation sequencing becomes commonplace in diagnostic laboratories pathologists can expect to differentiate these tumors with increasing confidence, and actively contribute to related discoveries. Ultimately, when synthesized with rigorous clinical outcome data and other investigative techniques, a more robust landscape for the molecular diagnosis and classification of undifferentiated small round cell sarcomas is expected to emerge in the future.
Collapse
|
30
|
Kallen ME, Hornick JL. From the ashes of "Ewing-like" sarcoma: A contemporary update of the classification, immunohistochemistry, and molecular genetics of round cell sarcomas. Semin Diagn Pathol 2021; 39:29-37. [PMID: 34763921 DOI: 10.1053/j.semdp.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Round cell sarcomas include a diverse group of bone and soft tissue tumors, which comprise well-defined entities as well as several nascent categories presented in the 2020 World Health Organization classification. The morphologic overlap yet disparate nosology, prognostic implications, and management strategies places a high value on ancillary testing, including a strategic immunohistochemical approach and directed confirmation by cytogenetic and molecular genetic methods. We review the diagnostic categories that have emerged from the former wastebasket "undifferentiated round cell sarcoma" ("Ewing-like" sarcomas), with an emphasis on algorithmic exclusion of nonsarcomatous entities, diagnostic stratification of well-defined entities (Ewing sarcoma, rhabdomyosarcomas, poorly differentiated synovial sarcoma), and a discussion of the new categories with novel genetic alterations (CIC-rearranged sarcomas, sarcomas with BCOR genetic alterations, and round cell sarcomas with EWSR1-non-ETS fusions).
Collapse
Affiliation(s)
- Michael E Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, United States
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA, United States.
| |
Collapse
|
31
|
Yang S, Liu L, Yan Y, Jiang L, Han S, Shen D, Zhang B. CIC-NUTM1 Sarcomas Affecting the Spine: A Subset of CIC-Rearranged Sarcomas Commonly Present in the Axial Skeleton. Arch Pathol Lab Med 2021; 146:735-741. [PMID: 34525172 DOI: 10.5858/arpa.2021-0153-oa] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Tumors harboring CIC-NUTM1 fusion are a newly recognized rare sarcoma, but the documented cases are still limited. It is unclear whether it is the same as classic CIC-DUX4 sarcoma in terms of its clinical, pathologic, and behavioral aspects. OBJECTIVE.— To further explore the clinicopathologic characteristics of CIC-NUTM1 sarcoma. DESIGN.— The cases were diagnosed based on immunophenotype, next-generation sequencing, and fluorescence in situ hybridization tests and compared with the reported CIC-NUTM1 sarcomas in the literature. RESULTS.— Three cases of CIC-NUTM1 sarcomas involving the spine in adults were described. They were 2 men and 1 woman, aged 38 to 61 years. Two tumors were located in thoracic vertebrae and 1 in a cervical vertebra. All were locally advanced lesions destroying the bone and soft tissues without spinal cord involvement or metastasis. The tumors were composed of monomorphic small to medium-sized cells with round to epithelioid appearance. The architecture was lobulated and solid with diffuse or multifocal myxoid stroma. Next-generation sequencing revealed an in-frame fusion between CIC (exon 16 or 17) and NUTM1 (exon 5 or 6) in 3 cases. Fluorescence in situ hybridization confirmed CIC and NUTM1 breaks, and immunohistochemistry showed NUT staining in the nucleus. The patients died of disease 8 to 15 months (mean, 10.7 months) after presentation. Of the CIC-NUTM1 sarcomas reported in the literature along with our cases (n = 11), 8 cases developed in axial bone (5 spine, 3 skull base). CONCLUSIONS.— CIC-NUTM1 sarcomas showed distinct anatomic tropism for the axial skeleton and unfavorable behavior compared with classic CIC sarcoma.
Collapse
Affiliation(s)
- Shaomin Yang
- From the Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, China (Yang, Zhang)
| | - LiLi Liu
- the Department of Pathology, Peking University People's Hospital, Beijing, China (Liu, Yan, Shen)
| | - Yu Yan
- the Department of Pathology, Peking University People's Hospital, Beijing, China (Liu, Yan, Shen)
| | - Liang Jiang
- and the Departments of Orthopedics (Jiang) and Radiology (Han), Peking University Third Hospital, Beijing, China
| | - Songbo Han
- and the Departments of Orthopedics (Jiang) and Radiology (Han), Peking University Third Hospital, Beijing, China
| | - Danhua Shen
- the Department of Pathology, Peking University People's Hospital, Beijing, China (Liu, Yan, Shen).,Zhang and Shen are co-lead authors of this paper
| | - Bo Zhang
- From the Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, China (Yang, Zhang).,Zhang and Shen are co-lead authors of this paper
| |
Collapse
|
32
|
Chen T, Wang Y, Goetz L, Corey Z, Dougher MC, Smith JD, Fox EJ, Freiberg AS, Flemming D, Fanburg-Smith JC. Novel fusion sarcomas including targetable NTRK and ALK. Ann Diagn Pathol 2021; 54:151800. [PMID: 34464935 DOI: 10.1016/j.anndiagpath.2021.151800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Challenging emerging entities with distinctive molecular signatures may benefit from algorithms for diagnostic work-up. METHODS Fusion sarcomas (2020-2021, during pandemic) were diagnosed by clinicoradiology, morphology, phenotype, and next-generation sequencing (NGS). RESULTS Six fusion sarcomas in two males and four females involved the chest-wall, neck, or extremities; ages ranged 2-73, median 18 years. Sizes ranged 5.3-25.0, median 9.1 cm. These include high grade 1) TPR-NTRK1 of proximal femur with a larger rounded soft tissue mass, previously considered osteosarcoma yet without convincing tumor matrix. A pathologic fracture necessitated emergency hemipelvectomy (NED) and 2) novel KANK1-NTRK2 sarcoma of bone and soft tissue with spindled pleomorphic to epithelioid features (AWD metastases). 3) Novel ERC1-ALK unaligned fusion, a low grade infiltrative deep soft tissue hand sarcoma with prominent-vascularity, myopericytoid/lipofibromatosis-like ovoid cells, and collagenized stroma, was successfully treated with ALK-inhibitor (Crizotinib), avoiding amputation. These NTRK and ALK tumors variably express S100 and CD34 and were negative for SOX10. 4) and 5) CIC-DUX4 round cell tumors (rapid metastases/demise), one with COVID superinfection, were previously treated as Ewing sarcoma. These demonstrated mild pleomorphism and necrosis, variable myxoid change and CD99 reactivity, and a distinctive dot-like-Golgi WT1 immunostaining pattern. 6) A chest wall/thoracic round cell sarcoma, focal CD34/ keratins/CK7, revealed nuclear-STAT6, STAT6-NAB2 by NGS, confirming malignant solitary fibrous tumor, intermediate-risk-stratification (AWD metastases). CONCLUSIONS Recent fusion sarcomas include new KANK1-NTRK2 and ERC1-ALK, the latter successfully treated by targeted-therapy. ALK/NTRK fusion partners TPR and KANK1 suggest unusual high-grade morphology/behavior. Clinicoradiologic, morphologic, and phenotypic algorithms can prompt molecular-targeted immunostains or NGS for final classification and promising inhibitor therapy.
Collapse
Affiliation(s)
- Tiane Chen
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pathology, United States of America
| | - Ying Wang
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pathology, United States of America
| | - Lianna Goetz
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pathology, United States of America
| | - Zachary Corey
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America
| | - Meaghan C Dougher
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America
| | | | - Edward J Fox
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Orthopaedics, United States of America
| | - Andrew S Freiberg
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pediatrics, United States of America
| | - Donald Flemming
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Radiology, United States of America
| | - Julie C Fanburg-Smith
- Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pathology, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Orthopaedics, United States of America; Penn State Health/Milton S. Hershey Medical Center/Penn State College of Medicine, Department of Pediatrics, United States of America.
| |
Collapse
|
33
|
Abstract
This article focuses on various recently described or emerging cutaneous soft tissue neoplasms. These entities encompass a wide range of clinical and histologic characteristics. Emphasis is placed on their distinguishing morphologic and immunophenotypic features compared with entities that enter into their differential diagnosis, as well as novel immunophenotypic and molecular tests that are often necessary for accurate diagnosis of these entities. Entities discussed include EWSR1-SMAD3-rearranged fibroblastic tumor, superficial CD34-positive fibroblastic tumor, epithelioid fibrous histiocytoma, CIC-rearranged sarcomas, and NTRK-rearranged spindle cell tumors.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Soft Tissue and Bone Pathology Section, Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, L25, Cleveland, OH 44195, USA
| | - Jennifer S Ko
- Dermatopathology Section, Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, L25, Cleveland, OH 44195, USA
| | - Steven D Billings
- Dermatopathology Section, Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, L25, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Pan R, Wang Z, Wang X, Fang R, Xia Q, Rao Q. CRTC1-SS18 Fusion Sarcoma With Aberrant Anaplastic Lymphoma Kinase Expression. Int J Surg Pathol 2021; 30:99-105. [PMID: 34057377 DOI: 10.1177/10668969211021997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Undifferentiated small round cell sarcoma (USRCS) represents a highly heterogeneous group of tumors. A variety of specific gene fusions of USRCS have been reported, including CIC-FOXO4, CIC-NUTM1, BCOR-MAML3, and ZC3H7B-BCOR. Here we report a case of sarcoma harboring a rare recurrent CRTC1-SS18 gene fusion, which was considered as USRCS previously. This sarcoma was composed of nests of small round cells encapsulated in a fibrous stroma. Foci of necrosis and hemorrhage were observed in the tumor. Immunohistochemistry for anaplastic lymphoma kinase showed diffuse positivity. RNA-seq results revealed a chromosomal translocation of CRTC1 gene exon 1 on chromosome 19 with SS18 gene exon 2 on chromosome 18. Thereafter, fluorescence in-situ hybridization confirmed the presence of SS18 gene and CRTC1 gene break-apart, which manifested as the splitting of red and green signals into 2 parts. A previous study showed that CRTC1-SS18 fusion sarcoma and EWSR1-CREB1 fusion angiomatoid fibrous histiocytoma were clustered close in the expression profile. However, whether CRTC1-SS18 fusion sarcomas represent a high malignancy has been a matter of debate. Our study is a worthy addition to the series of rare rearrangements associated with sarcomas and may be of therapeutic relevance.
Collapse
Affiliation(s)
- Rui Pan
- Jinling Hospital, 144990Medical School of Nanjing University, Nanjing, China
| | - Ziyu Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaotong Wang
- Jinling Hospital, 144990Medical School of Nanjing University, Nanjing, China
| | - Ru Fang
- Jinling Hospital, 144990Medical School of Nanjing University, Nanjing, China
| | - Qiuyuan Xia
- Jinling Hospital, 144990Medical School of Nanjing University, Nanjing, China
| | - Qiu Rao
- Jinling Hospital, 144990Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Emerging Entities and New Diagnostic Markers for Head and Neck Soft Tissue and Bone Tumors. Adv Anat Pathol 2021; 28:139-149. [PMID: 33559990 DOI: 10.1097/pap.0000000000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bone and soft tissue tumors of the head and neck are relatively uncommon tumors that often represent a diagnostic challenge because of the wide range of entities that must be considered in the differential diagnosis. Over the past few years, classification of bone and soft tissue tumors has evolved primarily because of substantial contributions from molecular genetics, with the identification of new markers that are increasingly used to complement histopathologic findings in the routine diagnostic workup. This review focuses on the recently described mesenchymal tumors that preferentially involve the head and neck region, with a focus on the most relevant novel immunohistochemical and molecular findings, including gene fusions and mutations, that can help in the diagnosis and in the assessment of clinical behavior.
Collapse
|
36
|
Abstract
Bone tumors are a rare and heterogeneous group of neoplasms that occur in the bone. The diversity and considerable morphologic overlap of bone tumors with other mesenchymal and nonmesenchymal bone lesions can complicate diagnosis. Accurate histologic diagnosis is crucial for appropriate management and prognostication. Since the publication of the fourth edition of the World Health Organization (WHO) classification of tumors of soft tissue and bone in 2013, significant advances have been made in our understanding of bone tumor molecular biology, classification, prognostication, and treatment. Detection of tumor-specific molecular alterations can facilitate the accurate diagnosis of histologically challenging cases. The fifth edition of the 2020 WHO classification of tumors of soft tissue and bone tumors provides an updated classification scheme and essential diagnostic criteria for bone tumors. Herein, we summarize these updates, focusing on major changes in each category of bone tumor, the newly described tumor entities and subtypes of existing tumor types, and newly described molecular and genetic data.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX
| |
Collapse
|
37
|
Mizukami Y, Takahashi Y, Sugita S, Wakabayashi K, Suzuki H, Hasegawa T, Noguchi H, Adachi H. Primary capicua transcriptional repressor-rearranged sarcoma of the lung. Jpn J Clin Oncol 2021; 51:654-656. [PMID: 33338234 DOI: 10.1093/jjco/hyaa240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
A 60-year-old man had a malignant left lower lung tumour with no metastases and underwent video-assisted thoracoscopic left lower lobectomy and lymphadenectomy. Pathological examination led to a diagnosis of capicua transcriptional repressor (CIC)-rearranged sarcoma. He has had 3.5 years of recurrence-free survival. CIC-rearranged sarcoma is a Ewing-like sarcoma that shows pathological findings similar to Ewing sarcoma. Most of CIC-rearranged sarcoma is CIC-double homeobox 4 protein (DUX4) fusion. Pulmonary CIC-rearranged sarcoma is extremely rare and has an unfavourable prognosis. However, complete resection can produce prognosis of long-term survival, and thus, surgery is an important option.
Collapse
Affiliation(s)
- Yasushi Mizukami
- Department of Thoracic Surgery, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| | - Yuki Takahashi
- Department of Thoracic Surgery, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University Hospital, Sapporo, Japan
| | - Kento Wakabayashi
- Department of Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroaki Suzuki
- Department of Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University Hospital, Sapporo, Japan
| | - Hiroko Noguchi
- Department of Pathology, Kimitsu Chuo Hospital, Kisarazu, Japan
| | - Hirofumi Adachi
- Department of Thoracic Surgery, National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan
| |
Collapse
|
38
|
A novel ATXN1-DUX4 fusion expands the spectrum of 'CIC-rearranged sarcoma' of the CNS to include non-CIC alterations. Acta Neuropathol 2021; 141:619-622. [PMID: 33550509 DOI: 10.1007/s00401-021-02278-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
|
39
|
Torrence D, Zhang L, Sung YS, Dickson BC, Antonescu CR. Hyalinizing epithelioid tumors with OGT-FOXO fusions. A case report of a non-acral soft tissue mass harboring a novel FOXO4 gene rearrangement. Genes Chromosomes Cancer 2021; 60:498-503. [PMID: 33455033 DOI: 10.1002/gcc.22937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Recurrent fusions between OGT and members of the Forkhead box (FOXO) family of genes have been recently described in three cases of hyalinizing epithelioid acral soft tissue tumors in young adults showing co-expression for EMA and CD34. Despite the lack of an established myoepithelial lineage by immunohistochemistry, these lesions have been labeled as myoepithelioma-like due to their epithelioid phenotype and sclerotic background. In this study, we report a novel FOXO4-OGT fusion identified by targeted RNA sequencing in an unclassified shoulder soft tissue mass in a 40-year-old male. The tumor showed nodular foci of increased cellularity in a uniformly hyalinized background. The neoplastic cells were mainly epithelioid and focally spindled, with eosinophilic cytoplasm and indented nuclei with mild atypia. The tumor lacked significant mitotic activity and necrosis. Immunohistochemically, the tumor showed variable positivity for EMA, pan-CK, CD34, ERG and FLI1, while it was negative for CD31, S100, SOX10, desmin, and MUC4. INI1 expression was retained. Due to its unusual histology and conflicting immunoprofile, TruSight RNA fusion panel sequencing was performed which revealed a fusion between FOXO4 exon 2 to OGT exon 2. This is the first example of a soft tissue lesion harboring OGT-related fusions occurring in a non-acral location and associated with FOXO4 gene. Its line of differentiation and biologic potential remain uncertain.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Science, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
40
|
Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology 2021; 78:644-657. [PMID: 33438273 DOI: 10.1111/his.14265] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The fifth edition of the World Health Organization (WHO) classification of soft tissue and bone tumours was published in May 2020. This 'Blue Book', which is also available digitally for the first time, incorporates an array of new information on these tumours, amassed in the 7 years since the previous edition. Major advances in molecular characterisation have driven further refinements in classification and the development of ancillary diagnostic tests, and have improved our understanding of disease pathogenesis. Several new entities are also included. This review summarises the main changes introduced in the 2020 WHO classification for each subcategory of soft tissue and bone tumours.
Collapse
Affiliation(s)
- William J Anderson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Soft Tissue: Selected Changes and New Entities. Adv Anat Pathol 2021; 28:44-58. [PMID: 32960834 DOI: 10.1097/pap.0000000000000284] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soft tissue tumors are a relatively rare and diagnostically challenging group of neoplasms that can have varying lines of differentiation. Accurate diagnosis is important for appropriate treatment and prognostication. In the 8 years since the publication of the 4th Edition of World Health Organization (WHO) classification of soft tissue tumors, significant advances have been made in our understanding of soft tissue tumor molecular biology and diagnostic criteria. The 5th Edition of the 2020 WHO classification of tumors of soft tissue and bone incorporated these changes. Classification of tumors, in general, but particularly in soft tissue tumors, is increasingly based on the molecular characteristics of tumor types. Understanding tumor molecular genetics improves diagnostic accuracy for tumors that have been difficult to classify on the basis of morphology alone, or that have overlapping morphologic features. In many large hospitals in the United States and Europe, molecular tests on soft tissue tumors are a routine part of diagnosis. Therefore, surgical pathologists should be familiar with newly emerging molecular genetic techniques in clinical settings. In the near future, molecular tests, particularly in soft tissue tumor diagnosis, will become as routine during diagnosis as immunohistochemistry is currently. This new edition provides an updated classification scheme and essential diagnostic criteria for soft tissue tumors. Newly recognized entities and subtypes of existing tumor types, several reclassified tumors, and newly defined molecular and genetic data have been incorporated. Herein, we summarize the updates in the WHO 5th Edition, focusing on major changes in each category of soft tissue tumor, and the newly described tumor entities and subtypes.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX
| |
Collapse
|
42
|
Trautmann M, Hartmann W. Molecular Approaches to Diagnosis in Ewing Sarcoma: Fluorescence In Situ Hybridization (FISH). Methods Mol Biol 2021; 2226:65-83. [PMID: 33326094 DOI: 10.1007/978-1-0716-1020-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The differential diagnosis of small round cell tumors (SRCT) crucially relies on the synoptic evaluation of morphology, immunohistochemical patterns, and molecular features. Though the implementation of broad RNA sequencing in diagnostic molecular pathology routines has substantially changed the standards of molecular affirmation of diagnoses, fluorescence in situ hybridization (FISH) on formalin-fixed, paraffin-embedded (FFPE) tissue sections is still an elementary tool to provide a rapid molecular corroboration of diagnoses, essentially required for therapeutic decisions. We discuss here the major FISH approaches currently employed in diagnostic molecular pathology, addressing classic Ewing sarcoma and differential diagnoses among SRCT which cannot sufficiently be ruled out by immunohistochemistry. This chapter will approach technical issues but particularly strategies and pitfalls in the interpretation of FISH patterns.
Collapse
Affiliation(s)
- Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster, Germany.
| |
Collapse
|
43
|
Pettus JR, Kerr DA, Stan RV, Tse JY, Sverrisson EF, Bridge JA, Linos K. Primary myxoid and epithelioid mesenchymal tumor of the kidney with a novel GLI1-FOXO4 fusion. Genes Chromosomes Cancer 2020; 60:116-122. [PMID: 33159395 DOI: 10.1002/gcc.22916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/05/2022] Open
Abstract
To our knowledge, we describe the first mesenchymal tumor with a novel GLI1-FOXO4 fusion gene. This well-circumscribed kidney tumor displayed variably myxoid and epithelioid histologic features with a focally nodular growth pattern. The tumor cells showed bland, round to ovoid nuclei, with no overt high-grade features. The tumor showed focal immunopositivity for smooth muscle actin and Melan-A, which raised the possibility of a relationship with a perivascular epithelioid cell tumor. The clinical and morphologic features appear distinct from other reported neoplasms harboring GLI1 or FOXO4 gene rearrangements. The patient underwent radical nephrectomy and is without evidence of disease during a relatively short clinical follow-up period. However, the features of this tumor likely warrant long-term follow-up to monitor for the possibility of a late recurrence or metastasis. In addition to reporting this novel fusion-positive tumor, we also provide a brief review of GLI1 and FOXO4 gene functions in both normal and neoplastic contexts.
Collapse
Affiliation(s)
- Jason R Pettus
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Darcy A Kerr
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Radu V Stan
- Geisel School of Medicine at Dartmouth, Departments of Biochemistry and Cell Biology and of Pathology and Laboratory Medicine, Hanover, New Hampshire, USA
| | - Julie Y Tse
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | - Einar F Sverrisson
- Dartmouth-Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, USA
| | - Julia A Bridge
- The Translational Genomics Research Institute, Division of Molecular Pathology, Phoenix, Arizona, USA.,University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, Nebraska, USA
| | - Konstantinos Linos
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
44
|
Abstract
Undifferentiated sarcomas of soft tissue and bone have been defined as tumors with no identifiable morphologic, immunohistochemical, or molecular features indicating tumor cell origin. In young patients, these tumors frequently have a round or spindle cell morphology. Recently described recurrent translocations within this category have led to the recognition of new molecular subtypes of round cell sarcomas, and several of them have a more aggressive clinical course and less chemosensitivity. Because these "newcomers" are diagnosed based on their molecular characteristics, molecular investigation is key in the diagnosis and optimal treatment of these challenging tumors.
Collapse
Affiliation(s)
- Anita Nagy
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Burton Wing, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Gino R Somers
- Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Burton Wing, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Heredia-Soto V, Redondo A, Kreilinger JJP, Martínez-Marín V, Berjón A, Mendiola M. 3D Culture Modelling: An Emerging Approach for Translational Cancer Research in Sarcomas. Curr Med Chem 2020; 27:4778-4788. [PMID: 31830880 DOI: 10.2174/0929867326666191212162102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023]
Abstract
Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.
Collapse
Affiliation(s)
| | - Andrés Redondo
- Translational Oncology Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - José Juan Pozo Kreilinger
- Molecular Pathology and Therapeutic Targets Group, Idi- PAZ,La Paz University Hospital, Madrid, Spain
| | | | - Alberto Berjón
- Molecular Pathology and Therapeutic Targets Group, Idi- PAZ,La Paz University Hospital, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Idi- PAZ,La Paz University Hospital, Madrid, Spain
| |
Collapse
|
46
|
Capicua in Human Cancer. Trends Cancer 2020; 7:77-86. [PMID: 32978089 DOI: 10.1016/j.trecan.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Capicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers. In this review, we focus on how differential regulation of CIC through functional and genetic mechanisms contributes to subtype-specific cancer phenotypes and we propose new therapeutic strategies to effectively target CIC-altered cancers.
Collapse
|
47
|
Kumar-Sinha C, Anderson B, Heider A, Vo JN, Robinson DR, Wu YM, Chinnaiyan AM, Mody R. Clinical Sequencing of High-Grade Undifferentiated Sarcomas: A Case Series and Report of an Aggressive Primary Cardiac Tumor With Multiple Oncogenic Drivers. JCO Precis Oncol 2020; 4:PO.19.00322. [PMID: 33015523 PMCID: PMC7529506 DOI: 10.1200/po.19.00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Bailey Anderson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Amer Heider
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Josh N. Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
48
|
Myoepithelioma-like Hyalinizing Epithelioid Tumors of the Hand With Novel OGT-FOXO3 Fusions. Am J Surg Pathol 2020; 44:387-395. [PMID: 31567281 DOI: 10.1097/pas.0000000000001380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myoepithelial tumors of soft tissue are uncommon neoplasms characterized histologically by spindle to epithelioid cells arranged in cords, nests, and/or reticular pattern with chondromyxoid to hyaline stroma, and genetically by rearrangement involving EWSR1 (among other less common genes) in about half of the cases. The diagnosis often requires immunostaining to confirm myoepithelial differentiation, most importantly the expression of epithelial markers and S100 protein and/or GFAP. However, there are cases wherein the morphology is reminiscent of myoepithelial tumors, while the immunophenotype falls short. Here, we report 2 highly similar myoepithelioma-like tumors arising in the hands of young adults. Both tumors were well-demarcated and composed of alternating cellular areas with palely eosinophilic hyaline stroma and scattered acellular zones of densely eosinophilic collagen deposition. The tumor cells were mainly epithelioid cells and arranged in cords or small nests. Vacuolated cells encircling hyaline matrix globules were focally prominent. A minor component of nonhyaline fibrous nodular areas composed of bland spindle cells and rich vasculature was also observed. Perivascular concentric spindle cell proliferation and perivascular hyalinization were present in some areas. The tumor cells were positive for CD34 and epithelial membrane antigen (focal) by immunostaining, while largely negative for cytokeratin, S100, GFAP, p63, GLUT1, and claudin-1. By RNA sequencing, a novel OGT-FOXO3 fusion gene was identified in case 1 and confirmed by reverse transcription polymerase chain reaction and fluorescence in situ hybridization in both cases. Sharing the unusual clinicopathologic features and the novel fusion, these 2 cases probably represent a distinct tumor entity, whose relationship with myoepithelial tumors and tumorigenic mechanisms exerted by the OGT-FOXO3 fusion remain to be studied.
Collapse
|
49
|
The New CIC Mutation Associates with Mental Retardation and Severity of Seizure in Turkish Child with a Rare Class I Glucose-6-Phosphate Dehydrogenase Deficiency. J Mol Neurosci 2020; 70:2077-2084. [PMID: 32535712 DOI: 10.1007/s12031-020-01614-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. Capicua transcriptional repressor (CIC) is an important gene associated with mental retardation, autosomal dominant 45. Affiliated tissues including skin, brain, bone, and related phenotypes are intellectual disability and seizures. Clinical, biochemical, and whole exome analysis are carried out in a Turkish family. Mutation analysis of G6PD and CIC genes by Sanger sequencing in the whole family was carried out to reveal the effect of these mutations on the patient's clinical outcome. Here, we present the case of epilepsy in an 8-year-old child with a hemizygous variation in G6PD gene and heterozygous mutation in CIC gene, resulting in focal epileptiform activity and hypsarrhythmia in electroencephalography (EEG), seizures, psychomotor retardation, speech impairment, intellectual disability, developmental regression, and learning difficulties. Whole exome sequencing confirmed the diagnosis of X-linked increased susceptibility for hemolytic anemia due to G6PD deficiency and mental retardation type 45 due to CIC variant, which explained the development of epileptic seizures. Considering CIC variant and relevant relation with the severity and course of the disease, G6PD mutations sustained through the family are defined as hereditary. Our findings could represent the importance of variants found in G6PD as well as CIC genes linked to the severity of epilepsy, which was presumed based on the significant changes in protein configuration.
Collapse
|
50
|
Rekhi B, Kembhavi P, Mishra SN, Shetty O, Bajpai J, Puri A. Clinicopathologic features of undifferentiated round cell sarcomas of bone & soft tissues: An attempt to unravel the BCOR-CCNB3- & CIC-DUX4-positive sarcomas. Indian J Med Res 2020; 150:557-574. [PMID: 32048619 PMCID: PMC7038815 DOI: 10.4103/ijmr.ijmr_2144_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background & objectives: Certain genetically defined undifferentiated round cell sarcomas, namely BCOR-CCNB3 and CIC-DUX4 positive, have been described. Here we present detailed clinicopathologic features and molecular results in such cases. Methods: Fifty one cases of undifferentiated round cell sarcomas, including 32 cases, tested for BCOR-CCNB3 and CIC-DUX4 fusions, by reverse transcription polymerase chain reaction technique and 44 tumours, for CCNB3 immunostaining, were analyzed. Results: Twenty seven (52.9%) tumours occurred in males and 24 (47%) in females; in soft tissues (38; 74.5%), commonly, trunk and extremities and bones (13; 25.4%), frequently, femur and tibia. Five of 32 (15.6%) tested cases were positive for BCOR-CCNB3 fusion and seven (21.8%) for CIC-DUX4 fusions. Histopathologically, CIC-DUX4-positive sarcomas comprised nodular aggregates of round to polygonal cells, containing hyperchromatic nuclei, prominent nucleoli and moderate cytoplasm, with focal myxoid stroma and variable necrosis, in certain cases. BCOR-CCNB3-positive sarcomas mostly comprised diffusely arranged, round to oval to short spindly cells with angulated nuclei, vesicular chromatin, inconspicuous nucleoli and interspersed vessels. Immunohistochemically, tumour cells were positive for MIC2 in 24 of 49 (48.9%) and CCNB3 in 12 of 44 (27.2%) cases. Four of five BCOR-CCNB3-positive sarcomas showed CCNB3 immunostaining and 6 of 7 CIC-DUX4-positive sarcomas displayed WT1 immunostaining. Most patients (27/37) (72.9%) underwent surgical resection and chemotherapy. Median overall survival was 12 months, and disease-free survival was seven months. Interpretation & conclusions: Undifferentiated round cell sarcomas are rare; mostly occur in soft tissues of extremities, with CIC-DUX4 positive, as these are relatively more frequent than BCOR-CCNB3 positive sarcomas. CCNB3 and WT1 are useful immunostains for triaging such cases for BCOR-CCNB3 and CIC-DUX4 fusion testing, respectively. Overall, these are relatively aggressive tumours, especially CIC-DUX4-positive sarcomas.
Collapse
Affiliation(s)
- Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Hospital; Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Priyanka Kembhavi
- Department of Surgical Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Surya Narayan Mishra
- Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Omshree Shetty
- Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Ajay Puri
- Department of Surgical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|