1
|
Lu JG, Namjoshi SS, Niehaus AD, Tahata S, Lee CU, Wang L, McDonnell E, Seely M, Martin MG, Hazard FK. Clinicopathologic Features of IDEDNIK (MEDNIK) Syndrome in a Term Infant: Histopathologic Features of the Gastrointestinal Tract and Report of a Novel AP1S1 Variant. Pediatr Dev Pathol 2023; 26:406-410. [PMID: 37278357 DOI: 10.1177/10935266231177402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inherited syndromes of congenital enteropathy are rare, with many genetic causes described. Mutations of the AP1S1 gene results in the syndrome of intellectual disability, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma (IDEDNIK, formerly in the medical literature as MEDNIK). The clinicopathologic features of the enteropathy in IDEDNIK syndrome have not been fully explored. We describe a female infant who presented with metabolic acidosis, lethargy, and 14 watery stools per day. In the intensive care unit she required parenteral nutrition. She was found to have a novel homozygous pathogenic variant in the AP1S1 gene c.186T>G (p.Y62*). Esophagogastroduodenoscopy and colonoscopy at 6 months of age were grossly normal. However, histologic sections of the duodenum showed mild villous blunting and enterocytes with cytoplasmic vacuoles. CD10 immunostaining highlighted the disrupted brush border. MOC31 immunostaining was wild-type with a membranous pattern of expression. Electron microscopy of the duodenum showed scattered enterocytes cells with shortened and disrupted apical microvilli. Although there is a mixed gap diarrhea and disrupted brush border, there are no significant inclusions typical of microvillus inclusion disease, nor tufted enterocytes typical of tufting enteropathy, making the clinical and histopathologic features for this syndrome unique.
Collapse
Affiliation(s)
- Jiajie G Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shweta S Namjoshi
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Stanford University School of Medicine, Stanford, CA, USA
| | - Annie D Niehaus
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shawn Tahata
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chung Un Lee
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lin Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin McDonnell
- Department of Clinical Nutrition, Lucile Packard Children's Hospital Stanford, Stanford, CA, USA
| | - Melissa Seely
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Francis KL, Verma A, Pacheco MC, Wendel D, Vue PM, Hu SJ, Scarlett JM. Neurogenin-3 Enteric Endocrinopathy: A Rare Case of Pediatric Congenital Diarrhea and Diabetes Mellitus. JPGN REPORTS 2022; 3:e173. [PMID: 37168762 PMCID: PMC10158324 DOI: 10.1097/pg9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/23/2021] [Indexed: 05/13/2023]
Abstract
Disorders of intestinal enteroendocrine cells (EEC) are a rare cause of congenital diarrhea and diabetes. The gene NEUROG3 is essential in EEC differentiation, and mutations in this gene lead to a paucity of EEC in the intestine and pancreas, often presenting clinically as congenital diarrhea and diabetes mellitus. We present the earliest known diagnosis of NEUROG3-associated enteric endocrinopathy, which was identified on a neonatal diabetes genetic panel sent at 4 weeks of age. Our patient presented with severe diarrhea, malnutrition, electrolyte derangements, and neonatal diabetes. He was started on parenteral nutrition at 3 months of age for nutritional and hydration support and required long-acting insulin for his diabetes. We demonstrate significant reduction in EEC, including cells expressing glucagon-like peptide-1, in intestinal biopsies from our patient, raising the possibility that loss of glucagon-like peptide-1 contributes to NEUROG3-associated diarrhea and diabetes mellitus. This case advances our understanding of the presentation, diagnosis, and management of this rare disease.
Collapse
Affiliation(s)
- Kendra L. Francis
- From the Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA
| | - Arushi Verma
- Department of Pediatric Endocrinology, University of Nevada Reno School of Medicine, Reno, NV
| | - M. Cristina Pacheco
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA
| | - Danielle Wendel
- From the Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA
| | - Padade M. Vue
- From the Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA
| | - Shannon J. Hu
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA
| | - Jarrad M. Scarlett
- From the Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA
| |
Collapse
|
3
|
Tufting Enteropathy: A Review of Clinical and Histological Presentation, Etiology, Management, and Outcome. Gastroenterol Res Pract 2020; 2020:5608069. [PMID: 33029133 PMCID: PMC7530495 DOI: 10.1155/2020/5608069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Congenital tufting enteropathy (CTE), also named intestinal epithelial dysplasia, is a rare, autosomal recessive enteropathy with persistent and life-threatening intractable diarrhea early in life. Intractable diarrhea is present independent of breast or formula feeding. Most CTE patients require total parenteral nutrition (TPN), and in severe cases, small bowel transplantation is needed. In the last decade, we have seen remarkable progress in certain aspects, such as the pathogenesis and diagnostic methods of the disease. Rapidly developing molecular analysis techniques have improved the diagnostic methods for CTE and reduced invasive and expensive procedures. Mutations in the gene encoding human epithelial cell adhesion molecule (EpCAM) were identified in the typical form of CTE, which usually exhibits isolated refractory diarrhea. Moreover, the syndromic form of CTE features anal and choanal atresias as well as ophthalmologic signs, which are associated with mutations in the gene encoding Serine Peptidase Inhibitor Kunitz Type 2 (SPINT2). This article reviews CTE disease based on its clinical and histological presentation, etiology and pathogenesis, and management and outcome.
Collapse
|
4
|
Kawaguchi M, Yamamoto K, Takeda N, Fukushima T, Yamashita F, Sato K, Kitamura K, Hippo Y, Janetka JW, Kataoka H. Hepatocyte growth factor activator inhibitor-2 stabilizes Epcam and maintains epithelial organization in the mouse intestine. Commun Biol 2019; 2:11. [PMID: 30623107 PMCID: PMC6320337 DOI: 10.1038/s42003-018-0255-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023] Open
Abstract
Mutations in SPINT2 encoding the epithelial serine protease inhibitor hepatocyte growth factor activator inhibitor-2 (HAI-2) are associated with congenital tufting enteropathy. However, the functions of HAI-2 in vivo are poorly understood. Here we used tamoxifen-induced Cre-LoxP recombination in mice to ablate Spint2. Mice lacking Spint2 died within 6 days after initiating tamoxifen treatment and showed severe epithelial damage in the whole intestinal tracts, and, to a lesser extent, the extrahepatic bile duct. The intestinal epithelium showed enhanced exfoliation, villous atrophy, enterocyte tufts and elongated crypts. Organoid crypt culture indicated that Spint2 ablation induced Epcam cleavage with decreased claudin-7 levels and resulted in organoid rupture. These organoid changes could be rescued by addition of serine protease inhibitors aprotinin, camostat mesilate and matriptase-selective α-ketobenzothiazole as well as by co-deletion of Prss8, encoding the serine protease prostasin. These results indicate that HAI-2 is an essential cellular inhibitor for maintaining intestinal epithelium architecture.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 8600811, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898 Japan
| | - Yoshitaka Hippo
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 2608717, Japan
| | - James W. Janetka
- Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| |
Collapse
|
5
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2018; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane‐bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3′ end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556‐14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype–phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J Pathak
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| | - James L Mueller
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jozef Hertecant
- Genetics/Metabolics Service, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital, Birmingham, UK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Odul E Gurkan
- Department of Pediatrics, Gazi University School of Medicine, Ankara, Turkey
| | - Michael Yourshaw
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Erick Hernandez
- Pediatric Gastroenterology, Miami Children's Health System, Miami, Florida
| | | | - Sandhia Naik
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Ian R Sanderson
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Irene Axelsson
- Department of Pediatrics, Skane University Hospital, Malmo, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - C Richard Boland
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Martin G Martin
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Christopher D Putnam
- Department of Medicine, University of California, San Diego, La Jolla, California.,San Diego Branch, Ludwig Institute for Cancer Research, La Jolla, California
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|
6
|
Germán-Díaz M, Rodriguez-Gil Y, Cruz-Rojo J, Charbit-Henrion F, Cerf-Bensussan N, Manzanares-López Manzanares J, Moreno-Villares JM. A New Case of Congenital Malabsorptive Diarrhea and Diabetes Secondary to Mutant Neurogenin-3. Pediatrics 2017; 140:peds.2016-2210. [PMID: 28724572 DOI: 10.1542/peds.2016-2210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
Congenital diarrheal disorders are a group of rare enteropathies that often present with life-threatening diarrhea in the first weeks of life. Enteric anendocrinosis, characterized by a lack of intestinal enteroendocrine cells due to recessively inherited mutations in the Neurogenin-3 (NEUROG3) gene, has been described as a cause of congenital malabsorptive diarrhea. Diabetes mellitus also is typically associated with NEUROG3 mutations, be it early onset or a later presentation. Here we report a case of a 16-year-old male patient with severe malabsorptive diarrhea from birth, who was parenteral nutrition dependent and who developed diabetes mellitus at 11 years old. To the best of our knowledge, only 9 cases of recessively inherited NEUROG3 mutations have been reported in the literature to date. Our patient presents with several remarkable differences compared with previously published cases. This report can contribute by deepening our knowledge on new aspects of such an extremely rare disease.
Collapse
Affiliation(s)
| | | | | | - Fabienne Charbit-Henrion
- INSERM, UMR 1163, Laboratory of Intestinal Immunity, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France.,Department of Pediatric Gastroenterology, Hôpital Necker-Enfants Malades, Paris, France; and.,GENIUS group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Paediatric Gastroenterology, Hepatology, and Nutrition)
| | - Nadine Cerf-Bensussan
- INSERM, UMR 1163, Laboratory of Intestinal Immunity, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France.,GENIUS group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Paediatric Gastroenterology, Hepatology, and Nutrition)
| | | | | |
Collapse
|