1
|
de la Fouchardière A, Mazzei ME, Pastor M, Forster AM, Prieto VG. Spitz tumours and mimickers. Virchows Arch 2025; 486:143-164. [PMID: 39500756 DOI: 10.1007/s00428-024-03958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
Since their initial description in 1948, Spitz tumours have always been a challenge in the field of dermatopathology and paediatric pathology. Advances in molecular pathology have confirmed they are associated with specific anomalies, mainly gene fusions. They display a wide range of clinical presentations and histological subtypes. Most cases are Spitz nevi and very few lesions match the criteria to be diagnosed as atypical Spitz tumours. Even fewer are labelled as Spitz melanomas. Follow-up studies of genetically characterized cases have repeatedly confirmed that, even if the regional lymph node is involved, the overall outcome remains favourable. The aims of this review are to cover the variety of morphological presentations of Spitz tumours and illustrate the most rare subtypes. When possible, we have pointed out the potential trends between some unusual morphological features and the frequently associated genetic drivers. Spitz tumours have many differential diagnoses, the main being superficial spreading melanoma, with overlapping morphological features in early lesions. Essential clues to discriminate Spitz from mimickers have been listed and illustrated.
Collapse
Affiliation(s)
- Arnaud de la Fouchardière
- Department de Biopathologie, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France.
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue Contre Le Cancer, Lyon, France.
| | - María Eugenia Mazzei
- Facultad de Medicina, Unidad Académica de Dermatología, Hospital de Clínicas, Universidad de La República, Montevideo, Uruguay
| | - María Pastor
- Facultad de Medicina, Unidad Académica de Dermatología, Hospital de Clínicas, Universidad de La República, Montevideo, Uruguay
| | - Anna-Maria Forster
- Department of Dermatology, University Hospital of Basel, Schönbeinstrasse 40, CH-4056, Basel, Switzerland
| | - Victor G Prieto
- Department of Pathology, University of Texas - MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Hagstrom M, Fumero-Velázquez M, Dhillon S, Olivares S, Gerami P. An update on genomic aberrations in Spitz naevi and tumours. Pathology 2023; 55:196-205. [PMID: 36631338 DOI: 10.1016/j.pathol.2022.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Spitz neoplasms continue to be a diagnostic challenge for dermatopathologists and are defined by distinctive morphological and genetic features. With the recent advancements in genomic sequencing, the classification, diagnosis, and prognostication of these tumours have greatly improved. Several subtypes of Spitz neoplasms have been identified based on their specific genomic aberrations, which often correlate with distinctive morphologies and biological behaviour. These genetic driver events can be classified into four major groups, including: (1) mutations [HRAS mutations (with or without 11p amplification) and 6q23 deletions]; (2) tyrosine kinase fusions (ROS1, ALK, NTRK1-3, MET and RET); (3) serine/threonine kinase fusions and mutations (BRAF, MAP3K8, and MAP2K1); and (4) other rare genomic aberrations. These driver genomic events are hypothesised to enable the initial proliferation of melanocytes and are often accompanied by additional genomic aberrations that affect biological behaviour. The discovery of theses genomic fusions has allowed for a more objective definition of a Spitz neoplasm. Further studies have shown that the majority of morphologically Spitzoid appearing melanocytic neoplasms with aggressive behaviour are in fact BRAF or NRAS mutated tumours mimicking Spitz. Truly malignant fusion driven Spitz neoplasms may occur but are relatively uncommon, and biomarkers such as homozygous 9p21 (CDKN2A) deletions or TERT-p mutations can have some prognostic value in such cases. In this review, we discuss the importance and various methods of identifying Spitz associated genomic fusions to help provide more definitive classification. We also discuss characteristic features of the various fusion subtypes as well as prognostic biomarkers.
Collapse
Affiliation(s)
- Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Dermawan JK, DiNapoli SE, Mullaney KA, Sukhadia P, Agaram NP, Dickson BC, Antonescu CR. ALK-rearranged Mesenchymal Neoplasms: A Report of 9 cases Further Expanding the Clinicopathologic Spectrum of Emerging Kinase Fusion Positive Group of Tumors. Genes Chromosomes Cancer 2023; 62:75-84. [PMID: 36125853 PMCID: PMC10483220 DOI: 10.1002/gcc.23097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusions are oncogenic drivers in diverse cancer types. Although well established in inflammatory myofibroblastic tumor (IMT) and epithelioid fibrous histiocytoma (EFH), ALK rearrangements also occur in the emerging family of kinase fusion-positive mesenchymal neoplasms. We investigated 9 ALK-rearranged mesenchymal neoplasms (exclusive of IMT and EFH) arising in 6 males and 3 females with a wide age range of 10 to 78 years old (median 42 years). Tumors involved superficial and deep soft tissue (6) and viscera (3). Three were myxoid or collagenous low-grade paucicellular tumors with haphazardly arranged spindled cells. Three were cellular tumors with spindled cells in intersecting short fascicles or solid sheets. Three cases consisted of uniform epithelioid cells arranged in nests or solid sheets, with prominent mitotic activity and necrosis. Band-like stromal hyalinization was present in 6 cases. All tumors expressed ALK; four were positive for S100 and five were positive for CD34, while all were negative for SOX10. By targeted RNA sequencing, the breakpoints involved ALK exon 20; the 5' partners included KLC1, EML4, DCTN1, PLEKHH2, TIMP3, HMBOX1, and FMR1. All but two patients presented with localized disease. One patient had distant lung metastases; another had diffuse pleural involvement. Of the six cases with treatment information, five were surgically excised [one also received neoadjuvant radiation therapy (RT)], and one received RT and an ALK inhibitor. Of the four patients with follow-up (median 5.5 months), one remained alive with stable disease and three were alive without disease. We expand the clinicopathologic spectrum of ALK-fused mesenchymal neoplasms, including a low-grade malignant peripheral nerve sheath tumor-like subset and another subset characterized by epithelioid and high-grade morphology.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara E. DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kerry A. Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Narasimhan P. Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Macagno N, Pissaloux D, de la Fouchardière A, Karanian M, Lantuejoul S, Galateau Salle F, Meurgey A, Chassagne-Clement C, Treilleux I, Renard C, Roussel J, Gervasoni J, Cockenpot V, Crozes C, Baltres A, Houlier A, Paindavoine S, Alberti L, Duc A, Loarer FL, Dufresne A, Brahmi M, Corradini N, Blay JY, Tirode F. Wholistic approach - transcriptomic analysis and beyond using archival material for molecular diagnosis. Genes Chromosomes Cancer 2022; 61:382-393. [PMID: 35080790 DOI: 10.1002/gcc.23026] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/07/2022] Open
Abstract
Many neoplasms remain unclassified after histopathological examination, which requires further molecular analysis. To this regard, mesenchymal neoplasms are particularly challenging due to the combination of their rarity and the large number of subtypes, and many entities still lack robust diagnostic hallmarks. RNA transcriptomic profiles have proven to be a reliable basis for the classification of previously unclassified tumors and notably for mesenchymal neoplasms. Using exome-based RNA capture sequencing on more than 5000 samples of archival material (FFPE), the combination of expression profiles analyzes (including several clustering methods), fusion genes, and small nucleotide variations has been developed at the Centre Léon Bérard (CLB) in Lyon for the molecular diagnosis of challenging neoplasms and the discovery of new entities. The molecular basis of the technique, the protocol, and the bioinformatics algorithms used are described herein, as well as its advantages and limitations.
Collapse
Affiliation(s)
- Nicolas Macagno
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,Aix-Marseille University, Marmara institute, INSERM, U1251, MMG, DOD-CET, Marseille, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,CARADERM, French network of rare skin cancers, France
| | - Daniel Pissaloux
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Marie Karanian
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France
| | - Sylvie Lantuejoul
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Grenoble Alpes University, Grenoble, France.,MESOPATH, MESOBANK, French network of mesothelioma, France
| | - Françoise Galateau Salle
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,MESOPATH, MESOBANK, French network of mesothelioma, France
| | - Alexandra Meurgey
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France
| | | | | | - Caroline Renard
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Juliette Roussel
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Julie Gervasoni
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Vincent Cockenpot
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Carole Crozes
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Aline Baltres
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Aurélie Houlier
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | | | - Laurent Alberti
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Adeline Duc
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Francois Le Loarer
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France
| | - Armelle Dufresne
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Mehdi Brahmi
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Nadège Corradini
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Institute of pediatric oncology, IHOPe, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Jean-Yves Blay
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon I, Lyon, France.,Headquarters, UNICANCER, Paris, France
| | - Franck Tirode
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France.,Univ Lyon, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
5
|
ZHENG CN, WANG P, YAO D, FANG X, WU J, ZHENG X, KE C. Effect of turning-Q laser in combination with topical Chuangfukang collagen mask to improve facial appearance, greenish brown birthmark area and color depth of patients with facial greenish brown birthmark. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chu-na ZHENG
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| | - Peiping WANG
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| | - Dongying YAO
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| | - Xiaojuan FANG
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| | | | - Xiaoqing ZHENG
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| | - Changmin KE
- The Fifth Affiliated Hospital of Sun Yat-sen University, China
| |
Collapse
|
6
|
Spitz Tumors With ROS1 Fusions: A Clinicopathological Study of 6 Cases, Including FISH for Chromosomal Copy Number Alterations and Mutation Analysis Using Next-Generation Sequencing. Am J Dermatopathol 2020; 42:92-102. [PMID: 31361613 DOI: 10.1097/dad.0000000000001499] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spitz tumors represent a heterogeneous group of melanocytic neoplasms with a spectrum of biological behavior ranging from benign (Spitz nevus) to malignant (spitzoid melanoma). Prediction of the behavior of these lesions based on their histological presentation is not always possible. Recently, mutually exclusive activating kinase fusions, involving ALK, NTRK1, NTRK3, RET, MET, ROS1, and BRAF, have been found in a subset of spitzoid lesions. Some of these genetic alterations were associated with specific morphological features. Here, we report the histological presentation of 6 Spitz tumors with ROS1 fusion. The age of the patients ranged from 6 to 34 years, with strong female prevalence (5:1). All neoplasms were compound melanocytic proliferations with a predominant dermal growth but a conspicuous junctional component displaying atypical microscopic features qualifying them as atypical Spitz tumor. FIP1L1 and CAPRIN1 were identified as 2 novel 5'-fusion partners of ROS1 along with the known PWWP2A-ROS1 fusion. FISH for copy number changes of 9p21, 6p25, and 11q13 was negative in all but 1 neoplasm harboring isolated gain of 8q24. TERT-promoter hotspot mutation analysis was negative in all tumors. All patients are disease-free after a mean follow-up period of 30 months. It is concluded that ROS1-fused spitzoid neoplasms seem to have no distinctive histopathological features although consistent findings were spindled melanocytes arranged in confluent whorling nests, prominent transepidermal elimination of melanocytic nests, and myxoid/mucinous changes.
Collapse
|
7
|
Kastnerova L, Martinek P, Grossmann P, Steiner P, Vanecek T, Kyclova J, Ferak I, Zalud R, Slehobr O, Svajdler P, Sulc M, Bradamante M, Banik M, Hadravsky L, Sticova E, Hajkova V, Ptakova N, Michal M, Kazakov DV. A Clinicopathological Study of 29 Spitzoid Melanocytic Lesions With ALK Fusions, Including Novel Fusion Variants, Accompanied by Fluorescence In Situ Hybridization Analysis for Chromosomal Copy Number Changes, and Both TERT Promoter and Next-Generation Sequencing Mutation Analysis. Am J Dermatopathol 2020; 42:578-592. [PMID: 32701692 DOI: 10.1097/dad.0000000000001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ALK-fused spitzoid neoplasms represent a distinctive group of melanocytic lesions. To date, few studies addressed genetic and chromosomal alterations in these lesions beyond the ALK rearrangements. Our objective was to study genetic alterations, including ALK gene fusions, telomerase reverse transcriptase promoter (TERT-p) mutations, chromosomal copy number changes, and mutations in other genes. We investigated 29 cases of Spitz lesions (11 Spitz nevi and 18 atypical Spitz tumors), all of which were ALK immunopositive. There were 16 female and 13 male patients, with age ranging from 1 to 43 years (mean, 18.4 years). The most common location was the lower extremity. Microscopically, all neoplasms were polypoid or dome shaped with a plexiform, predominantly dermally located proliferation of fusiform to spindled melanocytes with mild to moderate pleomorphism. The break-apart test for ALK was positive in 17 of 19 studied cases. ALK fusions were detected in 23 of 26 analyzable cases by Archer FusionPlex Solid Tumor Kit. In addition to the previously described rearrangements, 3 novel fusions, namely, KANK1-ALK, MYO5A-ALK, and EEF2-ALK, were found. Fluorescence in situ hybridization for copy number changes yielded one case with the loss of RREB1 among 21 studied cases. TERT-p hotspot mutation was found in 1 of 23 lesions. The mutation analysis of 271 cancer-related genes using Human Comprehensive Cancer Panel was performed in 4 cases and identified in each case mutations in several genes with unknown significance, except for a pathogenic variant in the BLM gene. Our study confirms that most ALK fusion spitzoid neoplasms can be classified as atypical Spitz tumors, which occurs in young patients with acral predilection and extends the spectrum of ALK fusions in spitzoid lesions, including 3 hitherto unreported fusions. TERT-p mutations and chromosomal copy number changes involving 6p25 (RRB1), 11q13 (CCND1), 6p23 (MYB), 9p21 (CDKN2A), and 8q24 (MYC) are rare in these lesions. The significance of mutation in other genes remains unknown.
Collapse
Affiliation(s)
- Liubov Kastnerova
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Martinek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Grossmann
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Steiner
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Tomas Vanecek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Jitka Kyclova
- Department of Pathology, University Hospital, Brno, Czech Republic
| | - Ivan Ferak
- Agel Laboratory, Novy Jicin, Czech Republic
| | - Radim Zalud
- Department of Pathology, Regional Hospital, Kolin, Czech Republic
| | - Ondrej Slehobr
- Department of Pathology, Regional Hospital, Kolin, Czech Republic
| | - Peter Svajdler
- Department of Pathology, L. Pausteur University Hospital, Kosice, Czech Republic
| | - Miroslav Sulc
- Pathology Laboratory Chomutov, Chomutov, Czech Republic
| | | | - Martin Banik
- Department of Pathology, Regional Hospital, Karlovy Vary, Czech Republic
| | - Ladislav Hadravsky
- Department of Pathology, 1st Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic; and
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | - Michal Michal
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Dmitry V Kazakov
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| |
Collapse
|
8
|
Schaefer IM, Hong K, Kalbasi A. How Technology Is Improving the Multidisciplinary Care of Sarcoma. Am Soc Clin Oncol Educ Book 2020; 40:445-462. [PMID: 32421448 PMCID: PMC8009691 DOI: 10.1200/edbk_280729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sarcomas are rare tumors but comprise a wide histologic spectrum. Advances in technology have emerged to address the biologic complexity and challenging diagnosis and treatment of this disease. The diagnostic approach to sarcomas has historically been based on morphologic features, but technologic advances in immunohistochemistry and cytogenetic/molecular testing have transformed the interdisciplinary work-up of mesenchymal neoplasms in recent years. On the therapeutic side, technologic advances in the delivery of radiation have made it a linchpin in the treatment of localized and oligometastatic sarcoma. In this review, we discuss recent advances in the pathologic diagnosis of sarcomas and discuss select sarcoma types that illustrate how newly discovered diagnostic, prognostic, and predictive biomarkers have refined existing classification schemes and substantially shaped our diagnostic approach. Such examples include conventional and epithelioid malignant peripheral nerve sheath tumors (MPNSTs), emerging entities in the group of round cell sarcomas, and other mesenchymal neoplasms with distinct cytogenetic aberrations. Recent advances in radiation oncology, including intensity-modulated, stereotactic, MRI-guided, and proton radiotherapy (RT), will be reviewed in the context of neoadjuvant or adjuvant localized soft-tissue sarcoma and oligometastatic or oligoprogressive disease. Innovations in translational research are expected to be introduced into clinical practice over the next few years and will likely continue to affect the rapidly evolving field of sarcoma diagnostics and therapy.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| | - Kelvin Hong
- Division of Vascular & Interventional Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Anusha Kalbasi
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, Jonsson Comprehensive Cancer Center Sarcoma Program, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Quan VL, Panah E, Zhang B, Shi K, Mohan LS, Gerami P. The role of gene fusions in melanocytic neoplasms. J Cutan Pathol 2019; 46:878-887. [DOI: 10.1111/cup.13521] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Victor L. Quan
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Elnaz Panah
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Bin Zhang
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Katherine Shi
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Lauren S. Mohan
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Pedram Gerami
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| |
Collapse
|
10
|
Baltres A, Salhi A, Houlier A, Pissaloux D, Tirode F, Haddad V, Karanian M, Ysmail‐Dahlouk S, Boukendakdji F, Dahlouk D, Allaoua F, Metref M, Djeridane A, Fraitag S, de la Fouchardière A. Malignant melanoma with areas of rhabdomyosarcomatous differentiation arising in a giant congenital nevus with RAF1 gene fusion. Pigment Cell Melanoma Res 2019; 32:708-713. [DOI: 10.1111/pcmr.12785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/10/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Aline Baltres
- Department of Biopathology Centre Léon Bérard Lyon France
| | - Aicha Salhi
- Department of Dermatology, Medical Clinic Les Orangers University of Alger Medical School Algiers Algeria
| | - Aurelie Houlier
- Department of Biopathology Centre Léon Bérard Lyon France
- CNRS 5286, INSERM U1052, Cancer Research Centre of Lyon University of Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Daniel Pissaloux
- Department of Biopathology Centre Léon Bérard Lyon France
- CNRS 5286, INSERM U1052, Cancer Research Centre of Lyon University of Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Franck Tirode
- CNRS 5286, INSERM U1052, Cancer Research Centre of Lyon University of Lyon, Université Claude Bernard Lyon 1 Lyon France
| | | | - Marie Karanian
- Department of Biopathology Centre Léon Bérard Lyon France
- CNRS 5286, INSERM U1052, Cancer Research Centre of Lyon University of Lyon, Université Claude Bernard Lyon 1 Lyon France
| | | | | | - Djazia Dahlouk
- Pediatric Department Central Hospital of Army Algiers Algeria
| | - Fateh Allaoua
- Department of Plastic Surgery Central Hospital of Army Algiers Algeria
| | - Marzak Metref
- Department of Plastic Surgery Central Hospital of Army Algiers Algeria
| | - Assya Djeridane
- Department of Dermatology Central Hospital of Army Algiers Algeria
| | - Sylvie Fraitag
- Department of Pathology, APHP Hôpital Necker‐Enfants Malades Paris France
| | - Arnaud de la Fouchardière
- Department of Biopathology Centre Léon Bérard Lyon France
- CNRS 5286, INSERM U1052, Cancer Research Centre of Lyon University of Lyon, Université Claude Bernard Lyon 1 Lyon France
| |
Collapse
|
11
|
[Primitive myxoid melanoma: An unusual histological aspect]. Ann Dermatol Venereol 2019; 146:372-376. [PMID: 30910333 DOI: 10.1016/j.annder.2019.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/21/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Myxoid melanoma is a rare variant of melanoma that must be recognised. Herein we describe a new metastatic case. PATIENTS AND METHODS A 78-year-old woman consulted for a firm, pinkish nodule measuring 25mm and present for six months on her left leg. Analysis of the biopsy revealed achromic fusiform tumour cells separated by large myxoid plaques. Labeling of SOX10, HMB45 and PS100 was diffuse and of moderate to strong intensity. A diagnosis of myxoid melanoma was considered, with Breslow thickness of 9mm. Surgery was carried out with a 2-cm margin and confirmed the diagnosis. Dermatological follow-up at one year revealed metastatic spread to the ganglia, pleura, liver and bone. DISCUSSION Few cases of primary myxoid melanoma have been described, and the condition is probably underdiagnosed. The classic clinical presentation of this condition consists of a solitary achromic nodule found chiefly on the limbs. The microscopic appearance is relatively non-specific. Immunohistochemical analysis may indicate melanocytic involvement: cells exhibit expression of SOX10, diffuse expression of protein S100, and less consistent and more variable expression of HMB45. The increasingly common use of anti-SOX10 is of value since it is expressed in the nucleus of melanocytes. Mastocytes and TGF-ß secretion appear to be involved in myxoid stroma production. In the absence of specific codification, management of myxoid melanoma is comparable to that of other types of melanoma. There is uncertainty about the prognosis, with the involvement of TGF-ß possibly indicating the aggressive potential of this type of tumour.
Collapse
|
12
|
Chung CT, Marrano P, Swanson D, Dickson BC, Thorner PS. Fusion of ALK to the melanophilin gene MLPH in pediatric Spitz nevi. Hum Pathol 2019; 87:57-64. [PMID: 30857967 DOI: 10.1016/j.humpath.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Spitzoid neoplasms typically affect young individuals and include Spitz nevus, atypical Spitz tumor, and Spitzoid melanoma. Spitz tumors can exhibit gene fusions involving the receptor tyrosine kinases NTRK1, NTRK3, ALK, ROS1, RET, or MET, or the serine-threonine kinase BRAF. Because most studies have been based on adult cases, we studied ALK fusions in Spitz nevi occurring in pediatric patients. Twenty-seven cases were screened for ALK expression by immunohistochemistry, and 6 positive cases were identified. These cases were studied further using the TruSight RNA Fusion Panel, and in 4 cases, exon 20 of the ALK gene was found to be fused to exon 14 of the MLPH (melanophilin) gene, a gene fusion that has only been reported in a Spitz nevus in an adult. The remaining 2 cases showed no fusion of ALK with any gene. The cases with the MLPH-ALK fusion showed a similar histology to that described for Spitz nevi with ALK fusions, with spindle-shaped and epithelioid melanocytes in fusiform nests with a plexiform growth pattern and infiltrative border. We created a breakapart fluorescence in situ hybridization assay for MLPH, and all 4 cases with the MLPH-ALK fusion were positive, whereas the other 23 cases in the study were negative. Thus, ALK and MLPH were fused only to each other in our series. Melanophilin is part of the melanosome trafficking apparatus together with MYO5a, TPM3, and RAB27a, all constitutively expressed in melanocytes. Kinase fusions involving MYO5A and TPM3 have been reported in Spitz tumors, and our series adds MLPH to this group.
Collapse
Affiliation(s)
- Catherine T Chung
- Division of Pathology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada.
| | - Paula Marrano
- Division of Pathology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount, Sinai Hospital, Toronto, M5G 1X5 Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada; Department of Pathology and Laboratory Medicine, Mount, Sinai Hospital, Toronto, M5G 1X5 Canada
| | - Paul Scott Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada
| |
Collapse
|
13
|
Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci 2018; 19:E3448. [PMID: 30400214 PMCID: PMC6274813 DOI: 10.3390/ijms19113448] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) receptor is a membrane-bound tyrosine kinase. The pathogenesis of several cancers is closely related to aberrant forms of ALK or aberrant ALK expression, including ALK fusion proteins, ALK-activated point mutations, and ALK amplification. Clinical applications of different ALK inhibitors represent significant progress in targeted therapy. Knowledge of different aspects of ALK biology can provide significant information to further the understanding of this receptor tyrosine kinase. In this mini-review, we briefly summarize different features of ALK. We also summarize some recent research advances on ALK fusion proteins in cancers.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|