1
|
de la Fouchardière A, Mazzei ME, Pastor M, Forster AM, Prieto VG. Spitz tumours and mimickers. Virchows Arch 2025; 486:143-164. [PMID: 39500756 DOI: 10.1007/s00428-024-03958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
Since their initial description in 1948, Spitz tumours have always been a challenge in the field of dermatopathology and paediatric pathology. Advances in molecular pathology have confirmed they are associated with specific anomalies, mainly gene fusions. They display a wide range of clinical presentations and histological subtypes. Most cases are Spitz nevi and very few lesions match the criteria to be diagnosed as atypical Spitz tumours. Even fewer are labelled as Spitz melanomas. Follow-up studies of genetically characterized cases have repeatedly confirmed that, even if the regional lymph node is involved, the overall outcome remains favourable. The aims of this review are to cover the variety of morphological presentations of Spitz tumours and illustrate the most rare subtypes. When possible, we have pointed out the potential trends between some unusual morphological features and the frequently associated genetic drivers. Spitz tumours have many differential diagnoses, the main being superficial spreading melanoma, with overlapping morphological features in early lesions. Essential clues to discriminate Spitz from mimickers have been listed and illustrated.
Collapse
Affiliation(s)
- Arnaud de la Fouchardière
- Department de Biopathologie, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France.
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue Contre Le Cancer, Lyon, France.
| | - María Eugenia Mazzei
- Facultad de Medicina, Unidad Académica de Dermatología, Hospital de Clínicas, Universidad de La República, Montevideo, Uruguay
| | - María Pastor
- Facultad de Medicina, Unidad Académica de Dermatología, Hospital de Clínicas, Universidad de La República, Montevideo, Uruguay
| | - Anna-Maria Forster
- Department of Dermatology, University Hospital of Basel, Schönbeinstrasse 40, CH-4056, Basel, Switzerland
| | - Victor G Prieto
- Department of Pathology, University of Texas - MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Schoelinck J, Pissaloux D, Mouthon M, Vergara R, de la Fouchardière A. [Clinical, histological and genetic correlations in melanocytic tumours with chromosomal rearrangements]. Ann Pathol 2025; 45:3-14. [PMID: 38320889 DOI: 10.1016/j.annpat.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
In some tumoral subtypes chromosomal translocations lead to an oncogenic chimeric protein acting as a tumorigenesis driver event. The main fusion model combines the promoter swapping of an inactivated tumor suppressor gene and a functional kinase that evades its regulatory system. The range of described fusions keeps growing in the 2023 WHO classification of melanocytic tumours. It is not limited to the group of Spitz tumours as previously but now extends to blue tumours and dermal tumours with a melanocytic phenotype. Molecular pathology helps detect these anomalies using clinical and morphological features. This analysis is essential as this strongly conditions the adapted local treatment of such tumours who are often overtreated.
Collapse
Affiliation(s)
- Jeremy Schoelinck
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France.
| | - Daniel Pissaloux
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Maxime Mouthon
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Rémi Vergara
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Arnaud de la Fouchardière
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France; Équipe labellisée Ligue contre le cancer, Inserm 1052, CNRS 5286, centre Léon-Bérard, Cancer Research Center of Lyon, université de Lyon, université Claude-Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Hiraki T, Hirakawa S, Otsuki Y, Kajimoto K, Goto K, Serizawa M. Fatal Spitz Melanoma With MAD1L1::BRAF Fusion: A Case Report and Literature Review. J Cutan Pathol 2024. [PMID: 39723589 DOI: 10.1111/cup.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Spitz melanoma is extremely rare, and only a few cases of distant metastases have been reported. Herein, we describe a case of Spitz melanoma with multiple distant metastases. A 37-year-old woman presented with a 5.5-mm-diameter nodule on the right lower leg. She experienced multiple distant metastases, involving the lungs, liver, thyroid, stomach, ovary, bones, and skin, along with multiple lymph node metastases within 1 year. The patient succumbed to the disease 1 year and 6 months following the first excision. Histopathological examination revealed a dense distribution of large solid nests comprising large, atypical epithelioid melanocytes with abundant eosinophilic cytoplasm in the upper dermis. Diffuse PRAME and loss of p16 immunoexpression profiles were observed. Targeted DNA and Sanger sequencing revealed an in-frame MAD1L1(e16)::BRAF(e9) fusion in both primary tumor and metastatic subcutaneous lesion. A review of previously reported cases confirmed as Spitz melanoma with distant metastases (n = 7) revealed a broad age range (11-71 years, median 46 years), high mortality (5/7), frequent BRAF fusions (6/7), and recurrent TERT promotor mutations and CDKN2A/B deletions. This report adds valuable insights into our understanding of the clinical and genetic characteristics of Spitz melanoma with distant metastases.
Collapse
Affiliation(s)
- Tsubasa Hiraki
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Satoshi Hirakawa
- Department of Supportive Care in Cancer, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | | | - Keisuke Goto
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
- Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi, Japan
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
- Department of Diagnostic Pathology, Chutoen General Medical Center, Kakegawa, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan
- Department of Dermato-Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto, Japan
| |
Collapse
|
4
|
Delsupehe L, Steelandt T, Lemahieu J, Volders PJ, Geerdens E, Berden S, Daniels A, Froyen G, Maes B. Novel gene fusion discovery in Spitz tumours and its relevance in diagnostics. Virchows Arch 2024; 485:269-279. [PMID: 37731064 DOI: 10.1007/s00428-023-03649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
In addition to morphologic analysis, molecular diagnostic work up of Spitz tumours is often of great value for their accurate diagnosis/classification. Nowadays, next-generation sequencing (NGS) is the predominant screening method in molecular diagnostics. Up to 80% of these melanocytic neoplasms comprise gene fusions as genetic anomalies for which the driver codes for a protein harbouring a kinase domain. However, because of the variety of fusion partners the use of PCR-based targeted enrichment NGS methods is not recommended. We describe a series of four Spitz tumour samples in which distinct gene fusions were detected by hybridisation-based capture NGS (TPM3::ALK, LIMA1::ROS1, LRRFIP2::ROS1 and MYO5A::RET). Two of these fusions are not previously described. All 4 fusions were confirmed by reverse transcription-PCR. These findings demonstrate the need for molecular analysis that can detect unknown fusions in Spitz neoplasms for optimal diagnosis.
Collapse
Affiliation(s)
- Louis Delsupehe
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium
| | - Thomas Steelandt
- Laboratory of Pathological Anatomy, Jessa Hospital, Hasselt, Belgium
| | - Julie Lemahieu
- Laboratory for Dermatopathology, Dermpat, Ghent, Belgium
| | - Pieter-Jan Volders
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ellen Geerdens
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Severine Berden
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Annick Daniels
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Guy Froyen
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium.
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium.
- Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium.
| |
Collapse
|
5
|
Cloutier JM, Wang M, Vemula SS, Mirza S, Weier J, Aquino JD, McCalmont TH, LeBoit PE, Bastian BC, Yeh I. Amplification of Mutant NRAS in Melanocytic Tumors With Features of Spitz Tumors. Mod Pathol 2024; 37:100469. [PMID: 38467248 DOI: 10.1016/j.modpat.2024.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
NRAS activating mutations are prevalent in melanocytic neoplasia, occurring in a subset of common acquired melanocytic nevi and ∼30% of cutaneous melanomas. In this study, we described a cohort of 7 distinctive melanocytic tumors characterized by activating point mutations in codon 61 of NRAS with amplification of the mutant NRAS allele and shared clinicopathologic features. These tumors occurred predominantly in younger patients, with a median age of 20 years (range, 6-56 years). They presented as papules on the helix of the ear (4 cases) or extremities (3 cases). Microscopically, the tumors were cellular, relatively well-circumscribed, compound, or intradermal proliferations. The tumor cells often extended into the deep reticular dermis and involved the superficial subcutaneous fat in some cases. The melanocytes were epithelioid to spindled with moderate amounts of cytoplasm and conspicuous nucleoli. They were arranged in short plexiform fascicles, nests, and cords. Some cases had occasional pleomorphic and multinucleated melanocytes. Rare dermal mitotic figures were present in all cases. The dermis contained thick collagen bundles and minimal solar elastosis. Follow-up data were available for 5 patients, with a median period of 4.2 years (range, 1-9 years), during which no recurrences or metastases were reported. Our series highlights a clinicopathologically and molecularly distinctive subset of NRAS-mutated tumors with amplification of the mutant NRAS allele.
Collapse
Affiliation(s)
- Jeffrey M Cloutier
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Meng Wang
- Department of Dermatology, University of California, San Francisco, California
| | - Swapna S Vemula
- Department of Dermatology, University of California, San Francisco, California
| | - Sonia Mirza
- Department of Dermatology, University of California, San Francisco, California
| | - Jingly Weier
- Department of Dermatology, University of California, San Francisco, California
| | - Jamie D Aquino
- Department of Pathology, University of California, San Francisco, California
| | - Timothy H McCalmont
- Department of Dermatology, University of California, San Francisco, California; Department of Pathology, University of California, San Francisco, California; Golden State Dermatology Associates, Walnut Creek, California
| | - Philip E LeBoit
- Department of Dermatology, University of California, San Francisco, California; Department of Pathology, University of California, San Francisco, California; Helen Diller Family Cancer Center, University of California, San Francisco, California
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, California; Department of Pathology, University of California, San Francisco, California; Helen Diller Family Cancer Center, University of California, San Francisco, California
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, California; Department of Pathology, University of California, San Francisco, California; Helen Diller Family Cancer Center, University of California, San Francisco, California.
| |
Collapse
|
6
|
Daruish M, Ambrogio F, Colagrande A, Marzullo A, Alaggio R, Trilli I, Ingravallo G, Cazzato G. Kinase Fusions in Spitz Melanocytic Tumors: The Past, the Present, and the Future. Dermatopathology (Basel) 2024; 11:112-123. [PMID: 38390852 PMCID: PMC10885070 DOI: 10.3390/dermatopathology11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, particular interest has developed in molecular biology applied to the field of dermatopathology, with a focus on nevi of the Spitz spectrum. From 2014 onwards, an increasing number of papers have been published to classify, stratify, and correctly frame molecular alterations, including kinase fusions. In this paper, we try to synthesize the knowledge gained in this area so far. In December 2023, we searched Medline and Scopus for case reports and case series, narrative and systematic reviews, meta-analyses, observational studies-either longitudinal or historical, case series, and case reports published in English in the last 15 years using the keywords spitzoid neoplasms, kinase fusions, ALK, ROS1, NTRK (1-2-3), MET, RET, MAP3K8, and RAF1. ALK-rearranged Spitz tumors and ROS-1-rearranged tumors are among the most studied and characterized entities in the literature, in an attempt (although not always successful) to correlate histopathological features with the probable molecular driver alteration. NTRK-, RET-, and MET-rearranged Spitz tumors present another studied and characterized entity, with several rearrangements described but as of yet incomplete information about their prognostic significance. Furthermore, although rarer, rearrangements of serine-threonine kinases such as BRAF, RAF1, and MAP3K8 have also been described, but more cases with more detailed information about possible histopathological alterations, mechanisms of etiopathogenesis, and also prognosis are needed. The knowledge of molecular drivers is of great interest in the field of melanocytic diagnostics, and it is important to consider that in addition to immunohistochemistry, molecular techniques such as FISH, PCR, and/or NGS are essential to confirm and classify the different patterns of mutation. Future studies with large case series and molecular sequencing techniques are needed to allow for a more complete and comprehensive understanding of the role of fusion kinases in the spitzoid tumor family.
Collapse
Affiliation(s)
- Maged Daruish
- Dorset County Hospital NHS Foundation Trust, Dorchester DT1 2JY, UK
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
7
|
Urso C. Spitz Tumors and Melanoma in the Genomic Age: A Retrospective Look at Ackerman's Conundrum. Cancers (Basel) 2023; 15:5834. [PMID: 38136379 PMCID: PMC10741987 DOI: 10.3390/cancers15245834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
After 25 years, "Ackerman's conundrum", namely, the distinction of benign from malignant Spitz neoplasms, remains challenging. Genomic studies have shown that most Spitz tumors harbor tyrosine and serine/threonine kinase fusions, including ALK, ROS1, NTRK1, NTRK2, NTRK3, BRAF and MAP3K8, or some mutations, such as HRAS and MAP3K8. These chromosomal abnormalities act as drivers, initiating the oncogenetic process and conferring basic bio-morphological features. Most Spitz tumors show no additional genomic alterations or few ones; others harbor a variable number of mutations, capable of conferring characteristics related to clinical behavior, including CDKN2A deletion and TERT-p mutation. Since the accumulation of mutations is gradual and progressive, tumors appear to form a bio-morphologic spectrum, in which they show a progressive increase of clinical risk and histological atypia. In this context, a binary classification Spitz nevus-melanoma appears as no longer adequate, not corresponding to the real genomic substrate of lesions. A ternary classification Spitz nevus-Spitz melanocytoma-Spitz melanoma is more adherent to the real neoplastic pathway, but some cases with intermediate ambiguous features remain difficult to diagnose. A prognostic stratification of Spitz tumors, based on the morphologic and genomic characteristics, as a complement to the diagnosis, may contribute to better treatment plans for patients.
Collapse
Affiliation(s)
- Carmelo Urso
- Dermatopathology Study Center of Florence, I-50129 Florence, Italy
| |
Collapse
|
8
|
Mansour B, Vanecek T, Kastnerova L, Nosek D, Kazakov DV, Donati M. Spitz Tumor With SQSTM1::NTRK2 Fusion: A Clinicopathological Study of 5 Cases. Am J Dermatopathol 2023; 45:306-310. [PMID: 36939120 DOI: 10.1097/dad.0000000000002410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACT Spitz tumors are melanocytic neoplasms characterized by specific, mutually exclusive driver molecular events, namely genomic rearrangements involving the threonine kinase BRAF and the tyrosine kinase receptors ALK , NTRK1 , NTRK2 , NTRK3 , MET , RET , ROS1 , and MAP3K8 or less commonly, mutations in HRAS or MAP2K1 . We hereby report 5 Spitz tumors with a SQSTM1::NTRK2 fusion. All patients were woman with the ages at diagnosis ranging from 30 to 50 years. Locations included the lower extremity (n = 3), forearm, and back (one each). All the neoplasms were superficial melanocytic proliferation with a flat to dome-shaped silhouette, in which junctional spindled and polygonal dendritic melanocytes were mainly arranged as horizontal nests associated with conspicuous lentiginous involvement of the follicular epithelium. Only one case showed heavily pigmented, vertically oriented melanocytic nests resembling Reed nevus. A superficial intradermal component observed in 2 cases appeared as small nests with a back-to-back configuration. In all lesions, next-generation sequencing analysis identified a SQSTM1::NTRK2 fusion. A single case studied with fluorescence in situ hybridization for copy number changes in melanoma-related genes proved negative. No further molecular alterations were detected, including TERT-p hotspot mutations.
Collapse
Affiliation(s)
- Boulos Mansour
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Tomas Vanecek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Liubov Kastnerova
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden; and
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| | - Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
9
|
Yeh I. Melanocytic naevi, melanocytomas and emerging concepts. Pathology 2023; 55:178-186. [PMID: 36642570 DOI: 10.1016/j.pathol.2022.12.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
With the elucidation of the genetics of melanocytic tumours, new concepts have emerged. An important one is the identification of 'intermediate' melanocytic tumours, those with genetic progression events beyond those of melanocytic naevi but that are not fully malignant. Thus, melanocytic tumours exist on a genetic spectrum that likely corresponds to biological behaviour. There are multiple pathways to melanoma development with different initiating events and characteristic benign melanocytic neoplasms and the precise placement of tumours on these pathways remains to be established and the corresponding risks of progression quantified. In this review, I discuss the classification of melanocytic naevi based on clinical, histopathological and genetic features, as well as the concept of melanocytomas with discussion of specific recognisable subtypes.
Collapse
Affiliation(s)
- Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Andea AA. Molecular testing in melanoma for the surgical pathologist. Pathology 2023; 55:245-257. [PMID: 36653236 DOI: 10.1016/j.pathol.2022.12.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The diagnostic work-up of melanocytic tumours has undergone significant changes in the last years following the exponential growth of molecular assays. For the practising pathologist it is often difficult to sort through the multitude of different tests that are currently available for clinical use. The molecular tests used in melanocytic pathology can be broadly divided into four categories: (1) tests that predict response to systemic therapy in melanoma; (2) tests that predict prognosis in melanoma; (3) tests useful in determining the type or class of melanocytic tumour; and (4) tests useful in the differential diagnosis of naevus versus melanoma (primarily used as an aid in the diagnosis of histologically ambiguous melanocytic lesions). This review will present an updated synopsis of major molecular ancillary tests used in clinical practice.
Collapse
Affiliation(s)
- Aleodor A Andea
- Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Hagstrom M, Fumero-Velázquez M, Dhillon S, Olivares S, Gerami P. An update on genomic aberrations in Spitz naevi and tumours. Pathology 2023; 55:196-205. [PMID: 36631338 DOI: 10.1016/j.pathol.2022.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Spitz neoplasms continue to be a diagnostic challenge for dermatopathologists and are defined by distinctive morphological and genetic features. With the recent advancements in genomic sequencing, the classification, diagnosis, and prognostication of these tumours have greatly improved. Several subtypes of Spitz neoplasms have been identified based on their specific genomic aberrations, which often correlate with distinctive morphologies and biological behaviour. These genetic driver events can be classified into four major groups, including: (1) mutations [HRAS mutations (with or without 11p amplification) and 6q23 deletions]; (2) tyrosine kinase fusions (ROS1, ALK, NTRK1-3, MET and RET); (3) serine/threonine kinase fusions and mutations (BRAF, MAP3K8, and MAP2K1); and (4) other rare genomic aberrations. These driver genomic events are hypothesised to enable the initial proliferation of melanocytes and are often accompanied by additional genomic aberrations that affect biological behaviour. The discovery of theses genomic fusions has allowed for a more objective definition of a Spitz neoplasm. Further studies have shown that the majority of morphologically Spitzoid appearing melanocytic neoplasms with aggressive behaviour are in fact BRAF or NRAS mutated tumours mimicking Spitz. Truly malignant fusion driven Spitz neoplasms may occur but are relatively uncommon, and biomarkers such as homozygous 9p21 (CDKN2A) deletions or TERT-p mutations can have some prognostic value in such cases. In this review, we discuss the importance and various methods of identifying Spitz associated genomic fusions to help provide more definitive classification. We also discuss characteristic features of the various fusion subtypes as well as prognostic biomarkers.
Collapse
Affiliation(s)
- Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Zaremba A, Jansen P, Murali R, Mayakonda A, Riedel A, Philip M, Rose C, Schaller J, Müller H, Kutzner H, Möller I, Stadtler N, Kretz J, Sucker A, Bankfalvi A, Livingstone E, Zimmer L, Horn S, Paschen A, Plass C, Schadendorf D, Hadaschik E, Lutsik P, Griewank K. Genetic and methylation profiles distinguish benign, malignant and spitzoid melanocytic tumors. Int J Cancer 2022; 151:1542-1554. [PMID: 35737508 PMCID: PMC9474633 DOI: 10.1002/ijc.34187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/07/2022]
Abstract
Accurate classification of melanocytic tumors is important for prognostic evaluation, treatment and follow-up protocols of patients. The majority of melanocytic proliferations can be classified solely based on clinical and pathological criteria, however in select cases a definitive diagnostic assessment remains challenging and additional diagnostic biomarkers would be advantageous. We analyzed melanomas, nevi, Spitz nevi and atypical spitzoid tumors using parallel sequencing (exons of 611 genes and 507 gene translocation analysis) and methylation arrays (850k Illumina EPIC). By combining detailed genetic and epigenetic analysis with reference-based and reference-free DNA methylome deconvolution we compared Spitz nevi to nevi and melanoma and assessed the potential for these methods in classifying challenging spitzoid tumors. Results were correlated with clinical and histologic features. Spitz nevi were found to cluster independently of nevi and melanoma and demonstrated a different mutation profile. Multiple copy number alterations and TERT promoter mutations were identified only in melanomas. Genome-wide methylation in Spitz nevi was comparable to benign nevi while the Leukocytes UnMethylation for Purity (LUMP) algorithm in Spitz nevi was comparable to melanoma. Histologically difficult to classify Spitz tumor cases were assessed which, based on methylation arrays, clustered between Spitz nevi and melanoma and in terms of genetic profile or copy number variations demonstrated worrisome features suggesting a malignant neoplasm. Comprehensive sequencing and methylation analysis verify Spitz nevi as an independent melanocytic entity distinct from both nevi and melanoma. Combined genetic and methylation assays can offer additional insights in diagnosing difficult to classify Spitzoid tumors.
Collapse
Affiliation(s)
- Anne Zaremba
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Philipp Jansen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Anand Mayakonda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anna Riedel
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manuel Philip
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | | | - Heinz Kutzner
- Dermatopathologie Friedrichshafen, Medical faculty of the University Leipzig, Leipzig, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nadine Stadtler
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julia Kretz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Agnes Bankfalvi
- Department of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
- Rudolf-Schönheimer-Institute of Biochemistry, Medical faculty of the University Leipzig, Leipzig, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
13
|
Cheng TW, Ahern MC, Giubellino A. The Spectrum of Spitz Melanocytic Lesions: From Morphologic Diagnosis to Molecular Classification. Front Oncol 2022; 12:889223. [PMID: 35747831 PMCID: PMC9209745 DOI: 10.3389/fonc.2022.889223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Spitz tumors represent a distinct subtype of melanocytic lesions with characteristic histopathologic features, some of which are overlapping with melanoma. More common in the pediatric and younger population, they can be clinically suspected by recognizing specific patterns on dermatoscopic examination, and several subtypes have been described. We now classify these lesions into benign Spitz nevi, intermediate lesions identified as “atypical Spitz tumors” (or Spitz melanocytoma) and malignant Spitz melanoma. More recently a large body of work has uncovered the molecular underpinning of Spitz tumors, including mutations in the HRAS gene and several gene fusions involving several protein kinases. Here we present an overarching view of our current knowledge and understanding of Spitz tumors, detailing clinical, histopathological and molecular features characteristic of these lesions.
Collapse
Affiliation(s)
- Tiffany W. Cheng
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Madeline C. Ahern
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Alessio Giubellino,
| |
Collapse
|
14
|
Goto K, Pissaloux D, Fraitag S, Amini M, Vaucher R, Tirode F, de la Fouchardière A. RASGRF1-rearranged Cutaneous Melanocytic Neoplasms With Spitzoid Cytomorphology: A Clinicopathologic and Genetic Study of 3 Cases. Am J Surg Pathol 2022; 46:655-663. [PMID: 34799483 DOI: 10.1097/pas.0000000000001839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spitz neoplasms, according to 2018 WHO Blue Book, are morphologically defined by spindled and/or epithelioid melanocytes and genetically by either HRAS mutations or kinase gene fusions. The terminology "spitzoid" refers to lesions with similar morphology but with alternate or undefined genetic anomalies. Herein, we present 3 melanocytic neoplasms with a spitzoid cytomorphology, variable nuclear atypia, and harboring undescribed fusions involving RASGRF1. Two cases presented as unpigmented papules on the heel of a 26-year-old female (case 1) and the forearm of a 13-year-old boy (case 2). They were classified as low-grade melanocytomas (WHO 2018). The third case appeared as a pigmented ulcer on the sole of a 72-year-old female (case 3) that displayed diagnostic features of an invasive melanoma (Breslow thickness 6 mm, Clark level V). A wide skin reexcision identified an epidermotropic metastasis, and sentinel lymph node biopsy displayed multiple subcapsular metastatic deposits. RNA sequencing revealed CD63::RASGRF1, EHBP1::RASGRF1, and ABCC2::RASGRF1 fusions in cases 1 to 3, respectively. They were confirmed by a RASGRF1 break-apart fluorescence in situ hybridization technique. Translocations of RASGRF1, a gene coding a guanine nucleotide exchange factor but not a kinase, have rarely been reported in tumors. While all these cases showed spitzoid cytomorphology, it is too early to tell if they are true Spitz neoplasms as currently defined.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital
- Department of Pathology, Itabashi Central Clinical Laboratory
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute
- Department of Diagnostic Pathology, Osaka National Hospital, Osaka
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Departments of Biopathology
- Sword University Claude Bernard Lyon I, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital
- Department of Pathology, Paris Hospitals - Public Assistance, Paris, France
| | | | - Richard Vaucher
- Plastic Reconstructive and Aesthetic Surgery, Center Léon Bérard
| | - Franck Tirode
- Departments of Biopathology
- Sword University Claude Bernard Lyon I, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon
| | - Arnaud de la Fouchardière
- Departments of Biopathology
- Sword University Claude Bernard Lyon I, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon
| |
Collapse
|
15
|
Dal Pozzo CA, Cappellesso R. The Morpho-Molecular Landscape of Spitz Neoplasms. Int J Mol Sci 2022; 23:ijms23084211. [PMID: 35457030 PMCID: PMC9030540 DOI: 10.3390/ijms23084211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022] Open
Abstract
Spitz neoplasms are a heterogeneous group of melanocytic proliferations with a great variability in the histological characteristics and in the biological behavior. Thanks to recent discoveries, the morpho-molecular landscape of Spitz lineage is becoming clearer, with the identification of subtypes with recurrent features thus providing the basis for a more solid and precise tumor classification. Indeed, specific mutually exclusive driver molecular events, namely HRAS or MAP2K1 mutations, copy number gains of 11p, and fusions involving ALK, ROS, NTRK1, NTRK2, NTRK3, MET, RET, MAP3K8, and BRAF genes, correlate with distinctive histological features. The accumulation of further molecular aberrations, instead, promotes the increasing malignant transformation of Spitz neoplasms. Thus, the detection of a driver genetic alteration can be achieved using the appropriate diagnostic tests chosen according to the histological characteristics of the lesion. This allows the recognition of subtypes with aggressive behavior requiring further molecular investigations. This review provides an update on the morpho-molecular correlations in Spitz neoplasms.
Collapse
Affiliation(s)
- Carlo Alberto Dal Pozzo
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy;
| | - Rocco Cappellesso
- Pathological Anatomy Unit, University Hospital of Padua, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-8217962
| |
Collapse
|
16
|
Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells 2022; 11:cells11071238. [PMID: 35406801 PMCID: PMC8997439 DOI: 10.3390/cells11071238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in molecular technologies, from genomics and transcriptomics to epigenetics, are providing unprecedented insight into the molecular landscape of pediatric tumors. Multi-omics approaches provide an opportunity to identify a wide spectrum of molecular alterations that account for the initiation of the neoplastic process in children, response to treatment and disease progression. The detection of molecular markers is crucial to assist clinicians in accurate tumor diagnosis, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing also for personalized cancer management. This review summarizes the most recent developments in genomics research and their relevance to the field of pediatric oncology with the aim of generating an overview of the most important, from the clinical perspective, molecular markers for pediatric solid tumors. We present an overview of the molecular markers selected based on therapeutic protocols, guidelines from international committees and scientific societies, and published data.
Collapse
|
17
|
Yeh I. Update on classification of melanocytic tumors and the role of immunohistochemistry and molecular techniques. Semin Diagn Pathol 2022; 39:248-256. [DOI: 10.1053/j.semdp.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 11/11/2022]
|
18
|
Yeh I, Busam KJ. Spitz melanocytic tumours – a review. Histopathology 2021; 80:122-134. [DOI: 10.1111/his.14583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Iwei Yeh
- Department of Dermatology and Pathology University of California San Francisco CAUSA
| | - Klaus J Busam
- Department of Pathology Memorial Sloan Kettering Cancer Center New York NY USA
| |
Collapse
|
19
|
Andea AA. Molecular testing for melanocytic tumors: a practical update. Histopathology 2021; 80:150-165. [DOI: 10.1111/his.14570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Aleodor A Andea
- Departments of Pathology and Dermatology Michigan Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
20
|
Frederico IKS, Mesbah Ardakani N, Ryan AL, Cowley MJ, Wood BA. Spitz Melanoma of Childhood With A Novel Promoter Hijacking Anaplastic Lymphoma Kinase (C2orf42-ALK) Rearrangement. Am J Dermatopathol 2021; 43:972-975. [PMID: 34001747 DOI: 10.1097/dad.0000000000001972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We present the case of a prepubescent man of African descent who developed a spitzoid melanocytic proliferation showing evidence of a novel promoter hijacking ALK-C2orf42 rearrangement, with atypical histology, clinically apparent metastatic disease, and abnormal cytogenetic findings, representing a rare genuine case of "Spitz melanoma of childhood." As our understanding of the distinct molecular biology of different tumors traditionally grouped as spitzoid melanocytic lesions evolves, it is becoming increasingly apparent that this group encompasses morphologically and genetically distinct entities. Accurate classification with detailed molecular analysis and prolonged clinical follow-up is essential to allow meaningful conclusions regarding prognostication and prediction of response to therapy.
Collapse
Affiliation(s)
- Ingrid K S Frederico
- Department of Surgical Pathology, Livino Pinheiro Laboratory, Cancer Institute of Ceara, Fortaleza, Ceara, Brazil
| | - Nima Mesbah Ardakani
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
- University of Western Australia, School of Pathology and Laboratory Medicine, Crawley, Australia
| | - Annie L Ryan
- Department of Oncology, Haematology and Bone Marrow Transplant, Perth Children's Hospital, Nedlands, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia ; and
- School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Benjamin A Wood
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
- University of Western Australia, School of Pathology and Laboratory Medicine, Crawley, Australia
| |
Collapse
|
21
|
Kervarrec T, Pissaloux D, Tirode F, Samimi M, Jacquemus J, Castillo C, de la Fouchardière A. Morphologic features in a series of 352 Spitz melanocytic proliferations help predict their oncogenic drivers. Virchows Arch 2021; 480:369-382. [PMID: 34761304 DOI: 10.1007/s00428-021-03227-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
Spitz nevi are indolent melanocytic tumors arising preferentially during and after childhood. Over the last decades, recurrent oncogenic drivers, sparsely detected in melanoma, were identified in Spitz melanocytic proliferations. Therefore, the detection of such drivers appears as a relevant diagnostic tool to distinguish both entities. Interestingly, morphologic features might correlate with the oncogenic drivers. Thus, the goal of this study was to assess the performances of previously identified morphological criteria to predict the presence of specific drivers. In total, 352 Spitz melanocytic proliferations either with a genetically identified oncogenic driver or investigated for ALK, ROS1, and NTRK1 overexpression by immunohistochemistry were enrolled in the present study. The microscopic features of the cases were assessed blindly with regards to the molecular status and, performances of previously described morphological criteria to predict the molecular status were assessed applying the likelihood-ratio test (LHR). Overall, an oncogenic driver was identified in 76% of the cases (n = 268/352). No microscopic features allowed the reliable prediction of ROS1- and NTRK1-overexpressing cases. By contrast, a plexiform pattern can contribute to the recognition of ALK-overexpressing cases (LHR(+) = 6.14). Importantly, the pseudo-schwannoma variant was highly suggestive of NTRK3-rearranged cases (LHR(+) = 43). Moreover, atypical/malignant tumor (LHR(+) = 5.18), severe cellular atypia (LHR(+) = 5.07), and p16 loss (LHR(+) = 14) contribute to the recognition of MAP3K8-rearranged cases, while the presence of a sheet-like architecture (LHR(+) = 5.39) and a marked fibrosis of the stroma (LHR(+)=5.06) were predictive of BRAF-fused tumors. To conclude, our study confirms ALK-overexpressing, NTRK3-, MAP3K8-, and BRAF-rearranged cases harbored distinct morphologic features allowing their microscopic recognition.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Biopathology, Center Léon Bérard, Lyon, France. .,Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France. .,Biologie des infections à Polyomavirus team, INRA UMR 1282 ISP, Université de Tours, Tours, France.
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Centre Léon Bérard, Université Claude Bernard Lyon 1, Université de Lyon, INSERM 1052, CNRS, 5286, Lyon, France
| | - Franck Tirode
- Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Centre Léon Bérard, Université Claude Bernard Lyon 1, Université de Lyon, INSERM 1052, CNRS, 5286, Lyon, France
| | - Mahtab Samimi
- Biologie des infections à Polyomavirus team, INRA UMR 1282 ISP, Université de Tours, Tours, France.,Department of Dermatology, Centre Hospitalier Universitaire de Tours, Tours, France
| | | | - Christine Castillo
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Cypath Lyon, Villeurbanne, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Centre Léon Bérard, Université Claude Bernard Lyon 1, Université de Lyon, INSERM 1052, CNRS, 5286, Lyon, France
| |
Collapse
|
22
|
Cutaneous Melanomas Arising during Childhood: An Overview of the Main Entities. Dermatopathology (Basel) 2021; 8:301-314. [PMID: 34449585 PMCID: PMC8395919 DOI: 10.3390/dermatopathology8030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Cutaneous melanomas are exceptional in children and represent a variety of clinical situations, each with a different prognosis. In congenital nevi, the risk of transformation is correlated with the size of the nevus. The most frequent type is lateral transformation, extremely rare before puberty, reminiscent of a superficial spreading melanoma (SSM) ex-nevus. Deep nodular transformation is much rarer, can occur before puberty, and must be distinguished from benign proliferative nodules. Superficial spreading melanoma can also arise within small nevi, which were not visible at birth, usually after puberty, and can reveal a cancer predisposition syndrome (CDKN2A or CDK4 germline mutations). Prognosis is correlated with classical histoprognostic features (mainly Breslow thickness). Spitz tumors are frequent in adolescents and encompass benign (Spitz nevus), intermediate (atypical Spitz tumor), and malignant forms (malignant Spitz tumor). The whole spectrum is characterized by specific morphology with spindled and epithelioid cells, genetic features, and an overall favorable outcome even if a regional lymph node is involved. Nevoid melanomas are rare and difficult to diagnose clinically and histologically. They can arise in late adolescence. Their prognosis is currently not very well ascertained. A small group of melanomas remains unclassified after histological and molecular assessment.
Collapse
|
23
|
Cesinaro AM, Gallo G, Manfredini S, Maiorana A, Bettelli SR. ROS-1 Pattern Of Immunostaining In 11 Cases Of Spitzoid Tumours: Comparison With Histopathological, Fish And Ngs Analysis. Histopathology 2021; 79:966-974. [PMID: 34231248 DOI: 10.1111/his.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
AIMS Spitzoid tumours have been shown to harbour exclusive kinase fusions. Few studies have analysed substantial numbers of ROS-1 rearranged lesions, particularly immunohistochemistry has been poorly investigated. METHODS AND RESULTS Among a group of 35 spitzoid tumours, of which 34 consecutively diagnosed in a 3-year period, we found 11 cases ROS-1 positive at immunohistochemistry, belonging to 10 patients, 8 females and 2 males, aged 3 to 52 years (median 29); most lesions (8) were localized on the lower extremities. Four patterns of immunostaining were observed: cytoplasmic granular diffuse (6 cases), sparse cytoplasmic granules (3), paranuclear dots (1), and nuclear (1). All cases resulted rearranged at FISH analysis (cut-off >15%). NGS-RNA analysis featured specific fusions of ROS-1 in 4 cases: two with PWWP2A, one with PPFIBP1, and one with ZCCHC8. NGS-DNA analysis demonstrated in 5 cases specific mutations of AKT, EGFR, NRAS, MYC, ALK, and KIT genes. ROS-1 lesions belonged predominantly to the "Atypical Spitz Tumour" group and featured mainly a nested pattern at histology. Interestingly, one patient developed two lesions ROS-1 positive. CONCLUSIONS Immunohistochemistry showed a 100% of sensitivity and specificity compared to FISH results, corresponding to ROS-1 rearrangement in 31% of cases studied. These observations shed new light on the value of immunohistochemical evaluation of ROS-1 in spitzoid tumours. ROS-1 patterns of immunostaining probably reflect different subcellular localizations of ROS-1 fusions, although no specific correlations were found in cases studied. Immunohistochemistry and FISH resulted the most sensitive techniques in detecting ROS-1 rearrangement in this subset of neoplasms.
Collapse
Affiliation(s)
| | - Graziana Gallo
- Struttura Complessa di Anatomia - Istologia e Citologia Patologica e Struttura Semplice Dipartimentale di Patologia Molecolare e Medicina Predittiva
| | | | - Antonino Maiorana
- Struttura Complessa di Anatomia - Istologia e Citologia Patologica e Struttura Semplice Dipartimentale di Patologia Molecolare e Medicina Predittiva
| | | |
Collapse
|
24
|
Retrospective Cohort: Genomic Differences Between Pigmented Spindle Cell Nevi of Reed and Reed-Like Melanomas. Am J Dermatopathol 2021; 42:641-647. [PMID: 32000215 DOI: 10.1097/dad.0000000000001603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Some melanomas closely resemble pigmented spindle cell nevi (PSCN) of Reed histologically. The distinction of these entities is important for clinical management. A recent study showed most PSCN (78%) are fusion-driven, commonly involving NTRK3 (57%). Conversely, BRAF V600E mutations are not characteristic of PSCN but are frequent in melanoma. OBJECTIVE In this study, we assessed clinical, histologic and genomic differences between PSCN of Reed and Reed-like melanomas (RLMs). METHODS We performed BRAF V600E immunohistochemistry (IHC) for 18 PSCN and 20 RLM cases. All 23 benign PSCN cases previously underwent whole transcriptome and targeted DNA sequencing with a 1711 gene panel. RESULTS We previously demonstrated the majority of PSCN (18 of 23) has chimeric fusions. Among PSCN without a chimeric fusion, BRAF mutations were common. Noncanonical BRAF mutations were identified in 2 of 5 nonfusion cases, and 1 case had a canonical BRAF mutation. Alternatively, 70% of RLM demonstrated a BRAF V600E mutation. RLM also occurred more frequently in older patients. LIMITATIONS The overall sample size was small. CONCLUSIONS In diagnostically challenging cases, ancillary IHC studies can assist in distinguishing PSCN from RLM. Our study suggests positive staining by IHC for BRAF V600E and older age strongly favors a diagnosis of RLM.
Collapse
|
25
|
Goto K, Pissaloux D, Tirode F, de la Fouchardière A. Spitz nevus with a novel TFG-NTRK2 fusion: The first case report of NTRK2-rearranged Spitz/Reed nevus. J Cutan Pathol 2021; 48:1193-1196. [PMID: 33979462 DOI: 10.1111/cup.14062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Fusions of ALK, ROS1, NTRK1, NTRK3, RET, MET, MERTK, FGFR1, ERBB4, LCK, BRAF, MAP3K8, MAP3K3, and PRKDC and mutation of HRAS have so far been discovered as the genetic alterations associated with the pathogenesis of Spitz neoplasms. This report presents the first case of NTRK2-rearranged Spitz/Reed nevus. The patient was a 39-year-old male with a pigmented macule rapidly growing on his shoulder. Histopathologically, the lesion was a junctional melanocytic nevus composed of large nests of spindled melanocytes with abundant eosinophilic cytoplasm associated with a hyperplastic epidermis. These findings fulfilled the diagnostic criteria of a pigmented spindle cell nevus of Reed (variant of Spitz nevus). Immunohistochemistry for pan-Trk revealed diffuse cytoplasmic positivity in the tumor cells, but immunoexpression of ALK, ROS1, and BRAF V600E was not seen. A novel, in-frame, TFG-NTRK2 fusion was identified by RNA sequencing. This case report expands the list of genetic alterations in Spitz neoplasms and the spectrum of NTRK2-rearranged tumors.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| |
Collapse
|
26
|
Yeh I, Bastian BC. Melanoma pathology: new approaches and classification. Br J Dermatol 2021; 185:282-293. [PMID: 34060071 DOI: 10.1111/bjd.20427] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Cancer is caused by the accumulation of pathogenic alterations of the genome and epigenome that result in permanent changes that disrupt cellular homeostasis. The genes that become corrupted in this process vary among different tumour types, reflecting specific vulnerabilities and dependencies of the cell from which the cancer originated. This also applies to 'melanoma', a cancer that constitutes not one, but multiple diseases that can be separated based on their cell of origin, aetiology, clinical appearance and course, and response to treatment. In this article, we review the current classification of melanoma within distinct evolutionary pathways and the associated genetic alterations. In addition, we review the application of molecular diagnostics to the diagnosis of melanocytic tumours in the context of histopathological assessment.
Collapse
Affiliation(s)
- I Yeh
- Department of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - B C Bastian
- Department of Dermatology and Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
de la Fouchardière A, Tee MK, Peternel S, Valdebran M, Pissaloux D, Tirode F, Busam KJ, LeBoit PE, McCalmont TH, Bastian BC, Yeh I. Fusion partners of NTRK3 affect subcellular localization of the fusion kinase and cytomorphology of melanocytes. Mod Pathol 2021; 34:735-747. [PMID: 32968185 PMCID: PMC7985048 DOI: 10.1038/s41379-020-00678-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/08/2023]
Abstract
A subset of Spitz tumors harbor fusions of NTRK3 with ETV6, MYO5A, and MYH9. We evaluated a series of 22 melanocytic tumors in which an NTRK3 fusion was identified as part of the diagnostic workup. Tumors in which NTRK3 was fused to ETV6 occurred in younger patients were predominantly composed of epithelioid melanocytes and were classified by their histopathologic features as Spitz tumors. In contrast, those in which NTRK3 was fused to MYO5A were predominantly composed of spindled melanocytes arrayed in fascicles with neuroid features such as pseudo-Verocay bodies. To further investigate the effects of the fusion kinases ETV6-NTRK3 and MYO5A-NTRK3 in melanocytes, we expressed them in immortalized melanocytes and determined their subcellular localization by immunofluorescence. ETV6-NTRK3 was localized to the nucleus and diffusely within the cytoplasm and caused melanocytes to adopt an epithelioid cytomorphology. In contrast, MYO5A-NTRK3, appeared excluded from the nucleus of melanocytes, was localized to dendrites, and resulted in a highly dendritic cytomorphology. Our findings indicate that ETV6-NTRK3 and MYO5A-NTRK3 have distinct subcellular localizations and effects on cellular morphology.
Collapse
Affiliation(s)
- Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Meng Kian Tee
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sandra Peternel
- Department of Dermatovenereology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Manuel Valdebran
- Department of Dermatology and Dermatologic Surgery, Medical College of South Carolina, Charleston, SC, USA
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Franck Tirode
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip E LeBoit
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Departments of Dermatology and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy H McCalmont
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Departments of Dermatology and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Departments of Dermatology and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Departments of Dermatology and Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Zaremba A, Lodde G, Murali R, Philip M, Cosgarea I, Jansen P, Chorti E, Rose C, Hemmerlein B, Matull J, Thielmann CM, Kretz J, Möller I, Sucker A, Paschen A, Livingstone E, Zimmer L, Horn S, Schadendorf D, Hadaschik E, Griewank K. Molecular pathology as a diagnostic aid in difficult-to-classify melanocytic tumours with spitzoid morphology. Eur J Cancer 2021; 148:340-347. [PMID: 33773277 DOI: 10.1016/j.ejca.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Accurate classification of melanocytic proliferations has important implications for prognostic prediction, treatment and follow-up. Although most melanocytic proliferations can be accurately classified using clinical and pathological criteria, classification (specifically distinction between nevus and melanoma) can be challenging in a subset of cases, including those with spitzoid morphology. Genetic studies have shown that mutation profiles differ between primary melanoma subtypes and Spitz nevi. These differences may aid in distinguishing benign from malignant in some melanocytic tumours. Here, we present a selection of melanocytic proliferations with equivocal histopathological criteria, wherein genetic analysis was requested to help guide classification. In two of four cases, the genetic results offered valuable insights, allowing a definitive diagnosis, indicating the diagnostic value of mutation profiling in a real-world routine clinical setting. Although histopathological assessment remains decisive in melanocytic proliferation classification, we recommend including genetic profiling in cases of borderline or atypical lesion to support accurate classification.
Collapse
Affiliation(s)
- Anne Zaremba
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Manuel Philip
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ioana Cosgarea
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle Oncology, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom
| | - Philipp Jansen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eleftheria Chorti
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | - Johanna Matull
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carl M Thielmann
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julia Kretz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
29
|
Goto K, Pissaloux D, Kauer F, Huriet V, Tirode F, de la Fouchardière A. GOPC-ROS1 mosaicism in agminated Spitz naevi: report of two cases. Virchows Arch 2021; 479:559-564. [PMID: 33733342 DOI: 10.1007/s00428-020-02992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/02/2023]
Abstract
Spitz tumors are genetically associated with activating HRAS point mutations or fusions of either ALK, ROS1, NTRK1, NTRK3, RET, MET, MERTK, LCK, BRAF, MAP3K8, or MAP3K3. All these driver gene alterations are mutually exclusive. We report two cases of agminated Spitz naevi with a GOPC-ROS1 fusion. Both cases occurred on the lower limb of young adults. Since adolescence, pigmented or pink-colored papules have been periodically arising in a limited area of skin. In one case, an ill-defined hyperpigmented macule known since childhood was present in the background. Morphologically, at least five lesions were analyzed from each patient. In one case, all were predominantly junctional pigmented Spitz naevi, and in the other case, all were compound unpigmented Spitz naevi. No atypical features were present. RNA-sequencing revealed a GOPC-ROS1 gene translocation in both cases. Split signals of ROS1 gene in fluorescence in situ hybridization were observed not only in the nests of spitzoid melanocytes but also in the bland basal melanocytes surrounding the proliferations. These findings suggest the presence of a GOPC-ROS1 mosaicism in melanocytes with further emergence of agminated Spitz naevi potentially triggered by other genetic alterations. This expands the spectrum of genetic anomalies described in agminated Spitz naevi and our understanding of the mechanisms involved in their emergence.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, 28, rue Laennec, 69008, Lyon, France.,Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | | | | | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, 28, rue Laennec, 69008, Lyon, France.,Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, 28, rue Laennec, 69008, Lyon, France. .,Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France.
| |
Collapse
|
30
|
Abstract
ABSTRACT Specific alterations involving MAPK genes (MAP3K8 fusions, MAP3K3 fusions) have been recently detected in a subgroup of spitzoid neoplasms that seem to constitute a distinctive clinicopathologic group, occur mostly in younger patients (median age 18 years) and present with atypical histologic features associated with frequent homozygous deletion of CDKN2A, qualifying a high proportion of them as Spitz melanoma (malignant Spitz tumor). Apart from lesions with spitzoid morphology harboring MAP3K8 or MAP3K3 fusion, a single case with MAP2K1 deletion has been identified. The authors report herein 4 melanocytic lesions with a MAP2K1 mutation, all showing similar microscopic appearances, including spitzoid cytology and dysplastic architectural features, resembling so-called SPARK nevus, suggesting that these lesions may represent another distinctive group.
Collapse
|
31
|
Spitz Tumors With ROS1 Fusions: A Clinicopathological Study of 6 Cases, Including FISH for Chromosomal Copy Number Alterations and Mutation Analysis Using Next-Generation Sequencing. Am J Dermatopathol 2020; 42:92-102. [PMID: 31361613 DOI: 10.1097/dad.0000000000001499] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spitz tumors represent a heterogeneous group of melanocytic neoplasms with a spectrum of biological behavior ranging from benign (Spitz nevus) to malignant (spitzoid melanoma). Prediction of the behavior of these lesions based on their histological presentation is not always possible. Recently, mutually exclusive activating kinase fusions, involving ALK, NTRK1, NTRK3, RET, MET, ROS1, and BRAF, have been found in a subset of spitzoid lesions. Some of these genetic alterations were associated with specific morphological features. Here, we report the histological presentation of 6 Spitz tumors with ROS1 fusion. The age of the patients ranged from 6 to 34 years, with strong female prevalence (5:1). All neoplasms were compound melanocytic proliferations with a predominant dermal growth but a conspicuous junctional component displaying atypical microscopic features qualifying them as atypical Spitz tumor. FIP1L1 and CAPRIN1 were identified as 2 novel 5'-fusion partners of ROS1 along with the known PWWP2A-ROS1 fusion. FISH for copy number changes of 9p21, 6p25, and 11q13 was negative in all but 1 neoplasm harboring isolated gain of 8q24. TERT-promoter hotspot mutation analysis was negative in all tumors. All patients are disease-free after a mean follow-up period of 30 months. It is concluded that ROS1-fused spitzoid neoplasms seem to have no distinctive histopathological features although consistent findings were spindled melanocytes arranged in confluent whorling nests, prominent transepidermal elimination of melanocytic nests, and myxoid/mucinous changes.
Collapse
|
32
|
Eruptive Spitz nevus, a striking example of benign metastasis. Sci Rep 2020; 10:16216. [PMID: 33004920 PMCID: PMC7529892 DOI: 10.1038/s41598-020-73264-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
Metastasis is generally considered a characteristic of malignant tumors. Herein, we describe a patient with more than one hundred discrete Spitz nevi scattered all over her skin. Molecular analysis from three of the lesions identified a ROS1 fusion oncogene with identical genomic breakpoints, indicating that the nevi arose from a single transformed melanocyte and then disseminated throughout the integument. The demonstration of widespread distribution of a benign tumor with limited proliferative capability indicates that metastatic dissemination is not contingent on full malignant transformation. Thus, eruptive Spitz nevus is a striking example of benign metastasis, demonstrating that metastasis can occur before malignant transformation.
Collapse
|
33
|
Williams EA, Shah N, Montesion M, Sharaf R, Pavlick DC, Sokol ES, Alexander BM, Venstrom JM, Elvin JA, Ross JS, Tse JY, Mochel MC. Melanomas with activating RAF1 fusions: clinical, histopathologic, and molecular profiles. Mod Pathol 2020; 33:1466-1474. [PMID: 32123303 PMCID: PMC7384985 DOI: 10.1038/s41379-020-0510-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
A subset of melanomas is characterized by fusions involving genes that encode kinases. Melanomas with RAF1 fusions have been rarely reported, mostly in clinical literature. To investigate this distinctive group of melanomas, we searched for melanomas with activating structural variants in RAF1, utilizing our case archive of clinical samples with comprehensive genomic profiling (CGP) by a hybrid capture-based DNA sequencing platform. Clinical data, pathology reports, and histopathology were reviewed for each case. RAF1 breakpoints, fusion partners, and co-occurring genetic alterations were characterized. From a cohort of 7119 melanomas, 40 cases (0.6%) featured fusions that created activating structural variants in RAF1. Cases with activating RAF1 fusions had median age of 62 years, were 58% male, and consisted of 9 primary tumors and 31 metastases. Thirty-nine cases were cutaneous primary, while one case was mucosal (anal) primary. Primary cutaneous melanomas showed variable architectures, including wedge-shaped and nodular growth patterns. Cytomorphology was predominantly epithelioid, with only one case, a desmoplastic melanoma, consisting predominantly of spindle cells. RAF1 5' rearrangement partners were predominantly intrachromosomal (n = 18), and recurrent partners included MAP4 (n = 3), CTNNA1 (n = 2), LRCH3 (n = 2), GOLGA4 (n = 2), CTDSPL (n = 2), and PRKAR2A (n = 2), all 5' of the region encoding the kinase domain. RAF1 breakpoints occurred in intron 7 (n = 32), intron 9 (n = 4), intron 5 (n = 2), and intron 6 (n = 2). Ninety-eight percent (n = 39) were wild type for BRAF, NRAS, and NF1 genomic alterations (triple wild type). Activating RAF1 fusions were present in 2.1% of triple wild-type melanomas overall (39/1882). In melanomas with activating RAF1 fusions, frequently mutated genes included TERTp (62%), CDKN2A (60%), TP53 (13%), ARID2 (10%), and PTEN (10%). Activating RAF1 fusions characterize a significant subset of triple wild-type melanoma (2.1%) with frequent accompanying mutations in TERTp and CDKN2A. CGP of melanomas may improve tumor classification and inform potential therapeutic options, such as consideration of specific kinase inhibitors.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA.
| | - Nikunj Shah
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Meagan Montesion
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Radwa Sharaf
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Dean C Pavlick
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Ethan S Sokol
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian M Alexander
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeff M Venstrom
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Julia A Elvin
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Julie Y Tse
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology & Laboratory Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Mark C Mochel
- Departments of Pathology and Dermatology, Virginia Commonwealth University School of Medicine, 1200 East Marshall Street, Richmond, VA, 23298, USA
| |
Collapse
|
34
|
Ito J, Nakano Y, Shima H, Miwa T, Kogure Y, Isshiki K, Yamazaki F, Oishi Y, Morimoto Y, Kataoka K, Okita H, Hirato J, Ichimura K, Shimada H. Central nervous system ganglioneuroblastoma harboring MYO5A-NTRK3 fusion. Brain Tumor Pathol 2020; 37:105-110. [PMID: 32556925 DOI: 10.1007/s10014-020-00371-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) ganglioneuroblastoma is a rare neuroectodermal neoplasm and little is known about its clinical and biological features. Herein, we report a pediatric case of CNS ganglioneuroblastoma harboring MYO5A-NTRK3 fusion. The patient, a 4-year-old boy, underwent a partial resection of a supratentorial tumor that was histopathologically diagnosed as a CNS ganglioneuroblastoma. Treatment with radiotherapy was started per the St Jude Medulloblastoma 03 (SJMB03) protocol; however, the tumor progressed rapidly and radiotherapy was temporally discontinued. Meanwhile, the patient underwent a second surgery, in which a gross total resection was successfully performed, following which he completed the remaining protocol-based therapy. Although an early focal recurrence was detected for which he received additional radiotherapy and oral temozolomide, the patient remained in complete remission for 14 months after the completion of the treatment. A central pathological review and molecular analysis were performed that revealed a MYO5A-NTRK3 fusion. Interestingly, the MYO5A-NTRK3 fusion has been recurrently detected in melanocytic tumors but not in other types of tumors. Therefore, it can be speculated that our case might partly share tumorigenesis mechanisms with MYO5A-NTRK3-positive melanocytic tumors. In addition, our case may enable an improved understanding of the pathogenesis and clinical features of CNS ganglioneuroblastomas.
Collapse
Affiliation(s)
- Jumpei Ito
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.
| | - Haruko Shima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoru Miwa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kyohei Isshiki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Fumito Yamazaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Shimada
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Goto K, Pissaloux D, Durand L, Tirode F, Guillot B, de la Fouchardière A. Novel three-way complex rearrangement of TRPM1-PUM1-LCK in a case of agminated Spitz nevi arising in a giant congenital hyperpigmented macule. Pigment Cell Melanoma Res 2020; 33:767-772. [PMID: 32386465 DOI: 10.1111/pcmr.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
The genetic anomalies associated with the agminated variant of Spitz nevus have so far been limited to HRAS G13R mutations, especially when arising within a nevus spilus. A previous report exposed the case of a man with a giant pigmented macule involving his upper right limb and trunk. Since childhood, Spitz nevi have been periodically arising, within the pigmented area. The histopathology of several lesions displayed the usual criteria of junctional, compound, or intradermal Spitz nevi with a diversity of cytomorphological and architectural features. Some lesions spontaneously regressed. Genetic studies confirmed in three lesions an identical translocation involving TRPM1, PUM1, and LCK. No mutations in HRAS, NRAS, BRAF, or other known fusion genes linked to Spitz nevus were detected. LCK break-apart fluorescence in situ hybridization confirmed the rearrangement was present not only in the melanocytic proliferation but also in the surrounding non-spitzoid melanocytes. This report expands the list of genetic alterations involved both in giant congenital macules and in agminated Spitz nevi, and also extends the concept of mosaicism in melanocytes to gene translocations.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bernard Guillot
- Department of Dermatology, Saint Eloi University Hospital, CHU Montpellier, Montpellier, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
36
|
Raghavan SS, Peternel S, Mully TW, North JP, Pincus LB, LeBoit PE, McCalmont TH, Bastian BC, Yeh I. Spitz melanoma is a distinct subset of spitzoid melanoma. Mod Pathol 2020; 33:1122-1134. [PMID: 31900433 PMCID: PMC7286778 DOI: 10.1038/s41379-019-0445-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Abstract
Melanomas that have histopathologic features that overlap with those of Spitz nevus are referred to as spitzoid melanomas. However, the diagnostic concept is used inconsistently and genomic analyses suggest it is a heterogeneous category. Spitz tumors, the spectrum of melanocytic neoplasms extending from Spitz nevi to their malignant counterpart Spitz melanoma, are defined in the 2018 WHO classification of skin tumors by the presence of specific genetic alterations, such as kinase fusions or HRAS mutations. It is unclear what fraction of "spitzoid melanomas" defined solely by their histopathologic features belong to the category of Spitz melanoma or to other melanoma subtypes. We assembled a cohort of 25 spitzoid melanomas diagnosed at a single institution over an 8-year period and performed high-coverage DNA sequencing of 480 cancer related genes. Transcriptome wide RNA sequencing was performed for select cases. Only nine cases (36%) had genetic alterations characteristic of Spitz melanoma, including HRAS mutation or fusion involving BRAF, ALK, NTRK1, or MAP3K8. The remaining cases were divided into those with an MAPK activating mutation and those without an MAPK activating mutation. Both Spitz melanoma and spitzoid melanomas in which an MAPK-activating mutation could not be identified tended to occur in younger patients on skin with little solar elastosis, infrequently harbored TERT promoter mutations, and had a lower burden of pathogenic mutations than spitzoid melanomas with non-Spitz MAPK-activating mutations. The MAPK-activating mutations identified affected non-V600 residues of BRAF as well as NRAS, MAP2K1/2, NF1, and KIT, while BRAF V600 mutations, the most common mutations in melanomas of the WHO low-CSD category, were entirely absent. While the "spitzoid melanomas" comprising our cohort were enriched for bona fide Spitz melanomas, the majority of melanomas fell outside of the genetically defined category of Spitz melanomas, indicating that histomorphology is an unreliable predictor of Spitz lineage.
Collapse
Affiliation(s)
| | - Sandra Peternel
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Thaddeus W Mully
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey P North
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Laura B Pincus
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Philip E LeBoit
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy H McCalmont
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Boris C Bastian
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11:genes11040424. [PMID: 32326537 PMCID: PMC7230609 DOI: 10.3390/genes11040424] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer.
Collapse
|
38
|
Polypoid Atypical Spitz Tumor With a Fibrosclerotic Stroma, CLIP2-BRAF Fusion, and Homozygous Loss of 9p21. Am J Dermatopathol 2020; 42:204-207. [DOI: 10.1097/dad.0000000000001502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Quan VL, Zhang B, Zhang Y, Mohan LS, Shi K, Wagner A, Kruse L, Taxter T, Beaubier N, White K, Zou L, Gerami P. Integrating Next-Generation Sequencing with Morphology Improves Prognostic and Biologic Classification of Spitz Neoplasms. J Invest Dermatol 2020; 140:1599-1608. [PMID: 32004563 DOI: 10.1016/j.jid.2019.12.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
The newest World Health Organization classification of skin tumors suggests the elimination of cases with BRAF and NRAS mutations from the categories of Spitz tumors (ST) and Spitz melanoma (SM). The objective of this study is to better characterize the genomics of Spitz neoplasms and assess whether the integration of genomic data with morphologic diagnosis improves classification and prognostication. We performed DNA and RNA sequencing on 80 STs, 26 SMs, and 22 melanomas with Spitzoid features (MSF). Next-generation sequencing data were used to reclassify tumors by moving BRAF and/or NRAS mutated cases to MSF. In total, 81% of STs harbored kinase fusions and/or truncations. Of SMs, 77% had fusions and/or truncations with eight involving MAP3K8. Previously unreported fusions identified were MYO5A-FGFR1, MYO5A-ERBB4, and PRKDC-CTNNB1. The majority of MSFs (84%) had BRAF, NRAS, or NF1 mutations, and 62% had TERT promoter mutations. Only after reclassification, the following was observed: (i) mRNA expression showed distinct clustering of MSF, (ii) six of seven cases with recurrence and all distant metastases were of MSFs, (iii) recurrence-free survival was worse in MSF than in the ST and SM groups (P = 0.0073); and (iv) classification incorporating genomic data was highly predictive of recurrence (OR 13.20, P = 0.0197). The majority of STs and SMs have kinase fusions as primary initiating genomic events. The elimination of BRAF and/or NRAS mutated neoplasms from these categories results in the improved classification and prognostication of melanocytic neoplasms with Spitzoid cytomorphology.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Female
- Follow-Up Studies
- GTP Phosphohydrolases/genetics
- High-Throughput Nucleotide Sequencing
- Humans
- Logistic Models
- Male
- Melanoma/diagnosis
- Melanoma/genetics
- Melanoma/mortality
- Melanoma/pathology
- Membrane Proteins/genetics
- Middle Aged
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Nevus, Epithelioid and Spindle Cell/diagnosis
- Nevus, Epithelioid and Spindle Cell/genetics
- Nevus, Epithelioid and Spindle Cell/mortality
- Nevus, Epithelioid and Spindle Cell/pathology
- Oncogene Proteins, Fusion
- Prognosis
- Proto-Oncogene Proteins B-raf/genetics
- Risk Assessment/methods
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Skin/pathology
- Skin Neoplasms/diagnosis
- Skin Neoplasms/genetics
- Skin Neoplasms/mortality
- Skin Neoplasms/pathology
- Young Adult
Collapse
Affiliation(s)
- Victor L Quan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yongzhan Zhang
- Department of Biochemistry and Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren S Mohan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Annette Wagner
- Division of Dermatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lacey Kruse
- Division of Dermatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | | | | - Kevin White
- Tempus Labs, Inc., Chicago, IL, Illinois, USA
| | - Lihua Zou
- Department of Biochemistry and Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
40
|
Yeh I. New and evolving concepts of melanocytic nevi and melanocytomas. Mod Pathol 2020; 33:1-14. [PMID: 31659277 DOI: 10.1038/s41379-019-0390-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
In daily clinical practice melanocytic nevi are commonly encountered. Traditionally, both benign and malignant melanocytic tumors have been sub-classified by their histopathologic characteristics with differing criteria for malignancy applied to each group. Recently, many of the mutations that initiate nevus formation have been identified and specific sets of mutations are found in different subtypes of nevi. Whereas a single mutation appears sufficient to initiate a nevus, but is not enough to result in melanoma, specific combinations of mutations have been identified in some melanocytic tumors that are regarded to be of low biologic potential. The term "melanocytoma" has recently been proposed by the World Health Organization to describe those tumors that demonstrate genetic progression beyond the single mutations that are found in nevi but are not frankly malignant. Melanocytomas occupy intermediate genetic stages between nevus and melanoma and likely have an increased risk of malignant transformation as compared to nevi. This review provides an update on the broad spectrum of melanocytic nevi and melanocytomas and outlines their key histopathologic and genetic features.
Collapse
Affiliation(s)
- Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, 1701 Divisadero St. Ste. 280, San Francisco, CA, 94143, USA.
| |
Collapse
|
41
|
Friedman BJ, Hernandez S, Fidai C, Jiang A, Shwayder TA, Carskadon S, Andea AA, Harms PW, Chitale D, Palanisamy N. A pediatric case of pigmented epithelioid melanocytoma with chromosomal copy number alterations in 15q and 17q and a novel
NTRK3‐SCAPER
gene fusion. J Cutan Pathol 2019; 47:70-75. [DOI: 10.1111/cup.13566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Ben J. Friedman
- Department of DermatologyHenry Ford Health System Detroit Michigan
- Department of Pathology and Laboratory MedicineHenry Ford Health System Detroit Michigan
| | - Simon Hernandez
- College of MedicineState University of New York Upstate Medical University Syracuse New York
| | - Chelsea Fidai
- Department of DermatologyHenry Ford Health System Detroit Michigan
| | - Angela Jiang
- Department of DermatologyHenry Ford Health System Detroit Michigan
| | - Tor A. Shwayder
- Department of DermatologyHenry Ford Health System Detroit Michigan
| | - Shannon Carskadon
- Department of UrologyVattikuti Urology Institute, Henry Ford Health System Detroit Michigan
| | - Aleodor A. Andea
- Department of Pathology, Michigan MedicineUniversity of Michigan Ann Arbor Michigan
- Department of Dermatology, Michigan MedicineUniversity of Michigan Ann Arbor Michigan
| | - Paul W. Harms
- Department of Pathology, Michigan MedicineUniversity of Michigan Ann Arbor Michigan
- Department of Dermatology, Michigan MedicineUniversity of Michigan Ann Arbor Michigan
| | - Dhananjay Chitale
- Department of Pathology and Laboratory MedicineHenry Ford Health System Detroit Michigan
| | - Nallasivam Palanisamy
- Department of UrologyVattikuti Urology Institute, Henry Ford Health System Detroit Michigan
| |
Collapse
|
42
|
Merkel EA, Mohan LS, Shi K, Panah E, Zhang B, Gerami P. Paediatric melanoma: clinical update, genetic basis, and advances in diagnosis. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:646-654. [PMID: 31204309 DOI: 10.1016/s2352-4642(19)30116-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Paediatric melanoma is rare and challenging to diagnose. The three subtypes are Spitzoid melanoma, melanoma arising in a congenital melanocytic nevus, and conventional (also known as adult-type) melanoma. Spitzoid melanomas have characteristic histopathological and genomic aberrations. Despite frequent involvement of the sentinel lymph nodes, most cases have an uneventful clinical course. Among congenital nevi, the risk of melanoma varies by projected size in adulthood, with the greatest risk in large or giant nevi. The clinical course is generally aggressive and accounts for most melanoma-related deaths in childhood. In conventional melanoma, superficial spreading and nodular melanoma account for most cases, with risk factors and presentation largely similar to adult disease. In this Review, we discuss advances in histological diagnosis using adjunctive molecular assays, and summarise the genetic basis of paediatric melanoma.
Collapse
Affiliation(s)
- Emily A Merkel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauren S Mohan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katherine Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnaz Panah
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
43
|
|
44
|
Qiu CC, Brown AE, Lobitz GR, Shanker A, Hsu S. The color of skin: black diseases of the skin, nails, and mucosa. Clin Dermatol 2019; 37:447-467. [PMID: 31896402 DOI: 10.1016/j.clindermatol.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gradations in skin color are a consequence of differing amounts of melanin and their varying distribution. Although many darkly pigmented skin lesions are melanocytic and can be attributed to melanin content, the color of a black lesion can also be due to blood, necrotic tissue, or exogenous pigment. The source, pattern, and distribution of the color in black lesions usually offer important insight into its etiology. This contribution reviews conditions that can take on a black color, discussing the cause of the hue and any additional impact sun exposure may have.
Collapse
Affiliation(s)
- Connie C Qiu
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Ashley E Brown
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gabriella R Lobitz
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akshay Shanker
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sylvia Hsu
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Quan VL, Panah E, Zhang B, Shi K, Mohan LS, Gerami P. The role of gene fusions in melanocytic neoplasms. J Cutan Pathol 2019; 46:878-887. [DOI: 10.1111/cup.13521] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Victor L. Quan
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Elnaz Panah
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Bin Zhang
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Katherine Shi
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Lauren S. Mohan
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| | - Pedram Gerami
- Department of DermatologyFeinberg School of Medicine, Northwestern University Chicago Illinois
| |
Collapse
|
46
|
Yeh I, Busam KJ, McCalmont TH, LeBoit PE, Pissaloux D, Alberti L, de la Fouchardière A, Bastian BC. Filigree-like Rete Ridges, Lobulated Nests, Rosette-like Structures, and Exaggerated Maturation Characterize Spitz Tumors With NTRK1 Fusion. Am J Surg Pathol 2019; 43:737-746. [PMID: 30844834 DOI: 10.1097/pas.0000000000001235] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Activating NTRK1 fusions have been described as oncogenic events across the spectrum of Spitz tumors. Herein we report a series of 38 Spitz tumors with NTRK1 fusion. These Spitz tumors have distinctive histopathologic features characterized by filigree-like rete ridges which are elongated, thin and branched, dermal melanocytes arranged in a rosette-like configuration, and marked diminishment of melanocyte size with descent into the dermis. These features are distinct from those of other genetically defined subtypes of Spitz tumors and can aid in microscopic diagnosis and help prioritize in case selection for molecular testing in the rare patients that need targeted therapy.
Collapse
Affiliation(s)
- Iwei Yeh
- Departments of Dermatology and Pathology, UCSF, San Francisco, CA
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Philip E LeBoit
- Departments of Dermatology and Pathology, UCSF, San Francisco, CA
| | | | | | - Arnaud de la Fouchardière
- Department of Biopathology, Centre Léon Bérard
- INSERM, Léon Bérard Center, Cancer Research Center of Lyon, University of Lyon, Claude Bernard University, Lyon, France
| | - Boris C Bastian
- Departments of Dermatology and Pathology, UCSF, San Francisco, CA
| |
Collapse
|
47
|
Jansen P, Cosgarea I, Murali R, Möller I, Sucker A, Franklin C, Paschen A, Zaremba A, Brinker TJ, Stoffels I, Schadendorf D, Klode J, Hadaschik E, Griewank KG. Frequent Occurrence of NRAS and BRAF Mutations in Human Acral Naevi. Cancers (Basel) 2019; 11:cancers11040546. [PMID: 30995742 PMCID: PMC6520878 DOI: 10.3390/cancers11040546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Acral naevi are benign melanocytic tumors occurring at acral sites. Occasionally they can progress to become malignant tumors (melanomas). The genetics of acral naevi have not been assessed in larger studies. In our study, a large cohort of 130 acral naevi was screened for gene mutations known to be important in other naevi and melanoma subtypes by targeted next-generation sequencing. Mutation status was correlated with clinicopathological parameters. Frequent mutations in genes activating the MAP kinase pathway were identified, including n = 87 (67%) BRAF, n = 24 (18%) NRAS, and one (1%) MAP2K1 mutations. BRAF mutations were almost exclusively V600E (n = 86, 99%) and primarily found in junctional and compound naevi. NRAS mutations were either Q61K or Q61R and frequently identified in dermal naevi. Recurrent non-V600E BRAF, KIT, NF1, and TERT promoter mutations, present in acral melanoma, were not identified. Our study identifies BRAF and NRAS mutations as the primary pathogenic event in acral naevi, however, distributed differently to those in non-acral naevi. The mutational profile of acral naevi is distinct from acral melanoma, which may be of diagnostic value in distinguishing these entities.
Collapse
Affiliation(s)
- Philipp Jansen
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Ioana Cosgarea
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Inga Möller
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Antje Sucker
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Cindy Franklin
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany.
| | - Annette Paschen
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Anne Zaremba
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Titus J Brinker
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Ingo Stoffels
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Dirk Schadendorf
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Joachim Klode
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Eva Hadaschik
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Klaus G Griewank
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147 Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
- Dermatopathologie bei Mainz, Bahnhofstraße 2 b, 55268 Nieder-Olm, Germany.
| |
Collapse
|
48
|
Activating Structural Alterations in MAPK Genes Are Distinct Genetic Drivers in a Unique Subgroup Of Spitzoid Neoplasms. Am J Surg Pathol 2019; 43:538-548. [DOI: 10.1097/pas.0000000000001213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
|
50
|
Chung CT, Marrano P, Swanson D, Dickson BC, Thorner PS. Fusion of ALK to the melanophilin gene MLPH in pediatric Spitz nevi. Hum Pathol 2019; 87:57-64. [PMID: 30857967 DOI: 10.1016/j.humpath.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Spitzoid neoplasms typically affect young individuals and include Spitz nevus, atypical Spitz tumor, and Spitzoid melanoma. Spitz tumors can exhibit gene fusions involving the receptor tyrosine kinases NTRK1, NTRK3, ALK, ROS1, RET, or MET, or the serine-threonine kinase BRAF. Because most studies have been based on adult cases, we studied ALK fusions in Spitz nevi occurring in pediatric patients. Twenty-seven cases were screened for ALK expression by immunohistochemistry, and 6 positive cases were identified. These cases were studied further using the TruSight RNA Fusion Panel, and in 4 cases, exon 20 of the ALK gene was found to be fused to exon 14 of the MLPH (melanophilin) gene, a gene fusion that has only been reported in a Spitz nevus in an adult. The remaining 2 cases showed no fusion of ALK with any gene. The cases with the MLPH-ALK fusion showed a similar histology to that described for Spitz nevi with ALK fusions, with spindle-shaped and epithelioid melanocytes in fusiform nests with a plexiform growth pattern and infiltrative border. We created a breakapart fluorescence in situ hybridization assay for MLPH, and all 4 cases with the MLPH-ALK fusion were positive, whereas the other 23 cases in the study were negative. Thus, ALK and MLPH were fused only to each other in our series. Melanophilin is part of the melanosome trafficking apparatus together with MYO5a, TPM3, and RAB27a, all constitutively expressed in melanocytes. Kinase fusions involving MYO5A and TPM3 have been reported in Spitz tumors, and our series adds MLPH to this group.
Collapse
Affiliation(s)
- Catherine T Chung
- Division of Pathology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada.
| | - Paula Marrano
- Division of Pathology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount, Sinai Hospital, Toronto, M5G 1X5 Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada; Department of Pathology and Laboratory Medicine, Mount, Sinai Hospital, Toronto, M5G 1X5 Canada
| | - Paul Scott Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8 Canada
| |
Collapse
|